ATLAS
High-Level Triggers,
DAQ

and

Tec

Issue:
Revision:
Reference:
Created:

Last modified:
Prepared By:

DCS

hnical Design Rep

Draft 1

0

ATLAS TDR-xx

12 November 2002

13 February 2003

ATLAS HLT/DAQ/DCS Group

ort

ATLAS Technical Design Report
High-Level Triggers, DAQ abd DCS 30 June 2003

All trademarks, copyright names and products referred to in this document are acknowledged as such.

ATLAS
High-Level Triggers, DAQ abd DCS

Technical Design Report

30 June 2003

ATLAS Collaboration

CERN
European Laboratory for Particle Physics (CERN), Geneva

ATLAS Collaboration

ATLAS Technical Design Report
High-Level Triggers, DAQ abd DCS 30 June 2003
Acknowledgements

The authors would like to thank Mario Ruggier for preparing the template upon which this doc-
ument is based and the DocSys group for their help in using it.

iv Acknowledgements

ATLAS Technical Design Report

TDR Name 5 June 1998
Table Of Contents

ATLAS Collaboration iii
Acknowledgements iv

Part 1
Global View 1
1 Overview . 3
1.1 Main system _.mnc:mBm:w 3
1.1.1 From physics . 3
1.1.2 From performance Axmmn -out, mm_mozo:v 3
1.1.3 Functional and operational 3
1.2 System functions 3
1.2.1 Detector R/0. 3
1.2.2 Event selection/rate qmacﬂ_o: 3
1.2.3 Movement of data 3
1.2.4 Storage of data (events, oosa_:o:m mﬁnv 4
125 Experiment Operation. 4
1.2.6 Detector controls. 4
1.3 Types of data TDAQ deals with 5
1.3.1 Detector control values 5
1.3.2 Eventdata. 5
1.3.3 Configuration data . 5
1.3.4 Conditions data . 5
1.3.5 Statistics and monitoring Qmﬁm 5
14 Glossary 5
1.5 References 5
2 Parameters 7
2.1 Detector RO Umqumﬁm_.m 7
2.1.1 RODs per detector per Um_.: ion 8
2.1.2 Fragment sizes per detector . 10
2.2 Trigger parameters 10
221 LVL1rates. 10
2.2.2 Parameters relevant 3« _.<_.N processing 11
2.2.3 Parameters relevant for Event Builder and Event _“_:2 13
2.3 Data rate summaries . 13
2.4 Monitoring requirements 15
2.5 DCS parameters 15
25.1 Data Volumes and rates 15
2.6 References 16
3 Operationial requirements for the TDAQ system. 17
3.1 Eventidentification 17

Table Of Contents

Technical Design Report

5 June 1998

3.2 TDAQ states 17
33 Therun 18
331 Runand xc: Zchm_. 18

3.3.2 Requirements 19

3.3.3 Physics and calibration runs 20

3.3.4 Operations during a Run. 20

3.3.5 Transition between Runs. 20

3.4 Partitions and related operations 22
3.5 Operations outside a run 22
3.6 Error/Fault reporting/handling mqmﬁmcvx 23
3.7 Data Bases 23
3.8 References 23
Event selection strategy. 25
4.1 The approach 25
4.2 Selection objects 25
4.2.1 Electron/photon 25

4.2.2 Muon 25

4.2.3 ._.m:_ma\mqa_mm 25

4.2.4 b-tagged jets 25

425 B-Physics 25

4.3 Trigger menus . 25
4.3.1 Physics triggers . 25

4.3.2 Pre-scaled physics :._m@m_.m 26

4.3.3 Monitor and calibration triggers 26

4.4 Physics coverage 26
45 Determination of trigger mm_o_mso_mm etc. 26
4.6 References 26
Architecture . 27
5.1 TDAQ context . 27
5.2 Context Diagram 27
5.2.1 TDAQ Interfaces 29
5.2.1.1 TDAQ interfaces to >._._|>m 29

5.2.1.2 External interfaces . 29

5.3 TDAQ Organisation . 29
5.3.1 Functional n_moo:ioz:o: 29

5.3.2 TDAQ building blocks and sub- m<m$3m 30

5.3.3 Component categories 31

5.4 TDAQ generic architecture 32
5.4.1 Architectural components 32
5.4.1.1 Detector read-out 32

5.4.1.2 Level-2:. 33

5.4.1.3 Event Builder. 33

5.4.1.4 Event Filter: 33

5.4.1.5 Online: 34

Table Of Contents

ATLAS

Technical Design Report

TDR Name 5 June 1998
55 TDAQ data flow architectural view. 35
5.6 TDAQ controls and supervisionview 35
5.7 Information sharing servicesview37
58 TDAQdatabaseview3
59 HLTview. .38
5.10 Partitioning . . . < 11
5.11 Scalal _Qo::mmvxmﬁmq.: P < 1
5.12 Baseline architecture _Bv_m:)_m:ﬂm:o: < 1
513 References .3

6 Fault Tolerance and Error Handling P "
6.1 _umc:,ﬁo_m«msommsamﬂSqusg_S@m:.mﬁm@v\ P X
6.2 Error Definition and Identification42
6.3 Error Reporting Mechanism42
6.4 Error Recovery Mechanisms 43

6.4.1 Verification, Diagnostic and Automatic xm8<mﬂ<43

6.5 Typical Use Cases. . . . PR ¥
6.5.1 Reliability and *mc_:o_m_.m:om_: Em _Umﬁm _u_o<< 46
6.5.1.1 Detectorread-out46

6.5.1.2 LevelltoRolbuilder46

6.5.1.3 Control and event data messages 46

6.5.1.4 Applications 46

6.5.2 mm__m_u___Qmzaﬁm:_:o_m_.m:om_:ﬁ:mxxxmv\mﬁmB 46

6.6 References .46

7 Monitoring Lo 4T
71 Overview.o
7.2 Monitoringsourceso 4

721 DAQ monitoring P Y &
7.2.1.1 Front-end and ROD 30:.8:3@ P Y
7.2.1.2 Data Collection monitoring47

7.2.2 Trigger monitoring.48
7.2.2.1 Trigger decision.48
7.22.1.1 LVL1decision48

7.22.1.2 LVL2decision48

72213 EFdecision48

7.2.2.1.4 Classification monitoring 48

7.2.2.2 Physics monitoring.48
7.2.2.3 Operational monitoring . . . P 1
7.2.2.3.1 LVL1 operational 303_8_._3@ P 1¢

7.2.2.3.2 LVL2 operational monitoring. 49

7.2.2.3.3 EF operational monitoring. 50

7.2.2.3.4 PESA SW operational monitoring 50

7.2.3 Detector monitoring51
7.3 Monitoring destinationsand means.52
7.3.1 Online Softwareservices.52

Table Of Contents

ATLAS Technical Design Report

TDR Name 5 June 1998

7.3.2 Monitoring in the Event Filter . 52

7.4 Archiving monitoring data 53

7.5 Monitoring requirements on networks 53
Part 2

System Components 55

8 Data-flow 57

8.1 (Possible _::.oa:o:o:v 57

8.2 Detector read-out and event fragment cc:m_._:m 57

8.2.1 Read-out link. 57

8.2.2 Read-out subsystem 59

8.2.2.1 High Level Design . 59

8.2.2.2 Design of the ROBIN 60

8.2.2.3 Implementation and performance 63

8.2.24 pROS 66

8.2.3 ROD crate data acquisition 66

8.2.3.1 High Level design 68

8.2.3.2 Implementation . 69

8.3 Boundary and interface to the level 1 :_mmmq 70

8.3.1 Description 71

8.3.2 Region of interest uc__amﬂ 71

8.3.2.1 Detailed design . 71

8.3.2.2 Performance 73

8.4 Control and flow of event data to :_@3 _m<m_ Sm@ma 74

8.4.1 Message passing 74

8.4.1.1 Control and event o_mﬁm messages . 74

8.4.1.1.1 L2SV 74

8.4.1.12 22L2PU. 75

8.4.1.1.3 ROS 75

8.4.1.14 25pROS. 75

8.4.1.15 2.6 DFM 75

8.4.1.16 SFI. 76

8.4.1.2 Ethernet 76

8.4.1.3 Design of the message passing component 76

8.4.1.4 Performance of the message passing. 76

8.4.2 Data collection 78

8.4.2.1 General overview 78

8.4.2.1.1 OS Abstraction _.mv\mq 80

8.4.2.1.2 Error Reporting 80

8.4.2.1.3 Configuration Database 80

8.4.2.1.4 System Monitoring 80

8.4.2.1.5 Run Control. 81

8.4.2.1.6 Message Passing 81

8.4.2.2 Rol data collection . 81

viii

Table Of Contents

ATLAS

Technical Design Report

TDR Name 5 June 1998

8.4.221 Design.8

8.4.2.2.2 Performance.81

8.4.2.3 EventBuilding81

8.4.231 Design.8

8.4.2.3.2 Performance.82

85 Scalability. . . . P . 74

85.1 Detector qmma out o:m::m_w T - 74

8.5.1.1 Control and flow ofeventdata. 82

8.5.1.2 Configurationandcontrol 82

852 Levellrate8

86 References8

9 High-level trigger. .8

91 HLTOverview. .8

9.2 Level 2. 85

921 Overview .8

922 RolBuilder86

923 LVL2Supervisor.86

924 LVL2Processors.86

9241 L2PU.86

9.24.2 PSC eumm>m$m::@ Oo::o__m_.v86

9.2.43 Dataaccessi/ff's.86

925 pROS

92,6 LVL2Operation.8

9.3 EventFilter P - 1 4

9.3.1 High Level Qmm_ms - 74

9.3.1.1 Functionality8

9.3.1.2 Operational Analysis 88

932 EventHandler88

9.3.21 Requirements. 88

9.3.2.2 Detaileddesign88

93.3 EFSupervision8

9.3.3.1 Requirements.89

9.3.3.2 Detailed design 89

9.3.4 mx:mﬁc:ozo:m:a\Uo&__o:\uﬂo<_amac<5mm<m::n__8_. ... 89

9.4 Eventselection software.9

95 References .. .9

10 Online Software9

10.0.1 Introduction . . . T I

10.0.2 The Architectural _<_on_ T A

10.1 Control and Supervision93

10.1.1 Functionality of the Control and Supervision. 93
10.1.2 Performance and Scalability Requirements on the no::o_ m:g

supervision . . . P

10.1.3 Architecture of Oo::.o_ m:a mcumz_m_o: Lo 94

10.1.3.1 Interaction of the Control and Supervision m<m83 <<_H: S:m_.

Table Of Contents ix

ATLAS Technical Design Report
TDR Name 5 June 1998
Online SW packages 9%
10.1.3.2 User Interface . . . P 1}
10.1.3.3 Supervision and <m::om:o: Lo .. 9%
10.1.3.4 Process, Access and Resource Zm:mmmBmE w<mﬂm3m .97
10.1.4 Prototype Evaluation97
10.2 Databases . . . T
10.2.1 Functionality oﬁ Em Dmﬁmcmmmm T |
10.2.1.1 Configuration Databases. 98
10.2.1.2 Online Bookkeeper. . . . s 99
10.2.1.3 Conditions Databases _:Hmlmomm Lo .. 99
10.2.2 Performance and Scalability Requirements on the Umﬂmcmmmm .99
10.2.2.1 Configuration Databases. 99
10.2.2.2 Online Bookkeeper.100
10.2.2.3 Conditions Databases.100
10.2.3 Architecture of Databases100
10.2.3.1 Configuration databases.100
10.2.3.2 Online bookkeeper. . . . e (0§
10.2.3.3 Conditions Database _3$1m8 P103
10.2.4 Application of Databases by the TDAQ Sub- w<mﬁm3m103
10.2.5 Prototype Evaluation . . . P (0
10.2.5.1 Configuration Umﬁmummmm T (0
10.2.5.2 Online Bookkeeper. . . . L. 104
10.2.5.3 Conditions Databases _Emlmomm 0
10.3 Information Sharing 105
10.3.1 Functionality of the _:83,_&_03 m:m::a mm?_omm P . 105
10.3.2 Performance and scalability requirements on Information m:m::@ 105
10.3.3 Architecture of Information Sharing Services.106
10.3.3.1 Information Service106
10.3.3.2 Error Reporting Service107
10.3.3.3 Online Histogramming Service107
10.3.3.4 Event Monitoring Service 108
10.3.4 Application of Information Sharing Services to ﬁ:m ._._u>o mcc m<m$3m

109
10.3.5 Prototype evaluation 109
10.3.5.1 Description of the Current _Bu_mBmsﬁmzo: S . 109
10.3.5.2 Performance and scalability of current _BU_mBmsﬁmzo: . 109
10.4 References .10
11 DCs L1111
111 _::oa:n:o: - e
11.2 Organization of the _uOm P
11.3 Front-End System. . . i K<
11.3.1 Embedded Local Monitor moma T I
11.3.2 Other standard FE equipment115
11.4 TheBack-End System116
1141 SCADA. .18

Table Of Contents

ATLAS Technical Design Report ATLAS Technical Design Report
TDR Name 5 June 1998 TDR Name 5 June 1998
1142 PVSS. .8 14.1 Introduction. . . . P X1
11.43 PVSSFramework119 14.2 Common tools for mm_mozo: P
11.4.4 Global PVSS based services120 14.3 Signatures, rates and efficiencies.143
115 IntegrationFE-BE .121 1431 e/gamma 143
11.5.1 OLE for Process Control121 14.3.2 Muon selection143
1152 CANopen s 22 1433 Tau/jets/Eymiss14
1153 OPC CANopenserver.122 1434 b-tagging 144
11.6 Read-outchain. .123 14.3.5 B-physics . . . v 7
11.6.1 ELMB Full Branch N 22 14.4 Eventrates and size to off- __:m P
11.6.2 Long term operation in Sa_m:o: T 21 145 Start-upscenario 144
11.7 Applications. .126 146 References 14
11.8 Connectionto DAQ 127 L
1181 R 00:85 oﬁ OoBEc:_nmzo: mccmv\mﬁm:ﬁmﬂ 15 Overall m<m$3.nm10_\3m38 andvalidation 145
1182 . . . OoBBcs_om:o: Software (Interface DCS - Trigger/DAQ)128 HMW "””mem“nmwoh__oﬁo.v\wmm. o et HMM
11.8.2.1 Data Transfer Facility (DDC-DT)128 ’ o o
11.8.2.2 Message Transfer Facility (DDC-MT)129 15.2.1 System performance of event mm_mozo: T 123
11.8.2.3 Command Transfer Facility (DDC-CT)130 15.2.1.1 Measurementand validation strategy145
15.2.1.2 EventselectionatLVL2146
11.9 External Systems .132 i i
11.91 Technical Services . . . e 15.2.1.3 m<2.: selection at the Event Filter.146
11.9.2 Environmental _s?mw:.cﬁca < V4 15214 Testing of HLTo 146
11.9.3 Detector Safety System133 1522 Thel0%prototype. 146
11.94 Magnetsystem 133 15.2.2.1 Laboratory setup T 1 ¥4
1195 LHC a3 15.2.2.2 Description of the measurements.147
11.10 References .13 i 15228 Results 1T
15.3 Functional tests and testbeam.147
12 Interfaces. . . . e K V4 15.4 Model analysis of mechanism and avoidance of message loss148
12.1 External to .:u>O e ke 155 Computer model e X
1211 LHC machine.137 15.5.1 Result of testbed Boam_ L . 151
12.1.2 Detectorso.o.o.o.o3r 15.5.2 Results of extrapolation of testbed BOam_m:Qam:::nmzo: oqnqoc_ma
1213 Offline. .137 areas. 182
122 Internalto TDAQ .37 156 Title?o 152
1221 LVLL. . . . s 3t 15.6.1 Technology tracking up to LHC turn-on152
12.2.2 s s 15.6.1.1 Networktechnology152
123 References .137 15.6.1.2 Processors.152
. 15.6.2 Survey of non-ATLAS solutions152
13 Experimentcontrol 139 15.6.3 Implication of staging scenarios152
13.1 Introduction. .139 15.6.4 Areas of CONCErn 152
13.2 Control coordination.139 15.7 Conclusions. 153
13.3 Sub-systemcontrol140 15.8 References 15
13.4 Control scenarios .10
135 References .. .14
Part 4
OrganisationandPlan .153
Part 3
System Performance .14 i
16 Quality Assurance and DevelopmentProcess.155
16.1 Quality AssuranceinTDAQ15
14 Ujv\w-Om selection and HLT —um_‘.,-ﬂo_.._ﬁm—._om R, L 16.2 The Um<m_0"u:‘_m3ﬁ Process15
Table Of Contents xi Table Of Contents

ATLAS Technical Design Report ATLAS Technical Design Report

TDR Name 5 June 1998 TDR Name 5 June 1998
16.2.1 Inspectionand Review155
16.2.2 Experience. . . . e 11
16.2.3 The Development _u:mmmm T L4
16.2.3.1 Requirements.157
16.2.3.2 Architectureand Design157
16.2.3.3 Implementation158
16.2.3.4 Component Testing and _:Hm@qm:o: ._.mm::@158
16.2.3.5 Maintenance158
16.2.4 The Development Environment159
16.3 Quality Assurance During Deployment159
16.3.1 Quality Assurance of operations during data me_:@ times . . .159
16.4 References .160
17 Costing . . P X6 X §
17.1 Initial mv\wﬁmB T (1
17.2 Finalsystem. .l61
17.3 Deferralplan .l61
174 References .l61
18 Organizationandresources163
181 P 6 X
18.2 xm*ma:omm e XX
19 Wwork-plan .165
19.1 Schedule .165
19.2 Commissioning. .165
19.2.1 TDAQ . . N 1)
19.2.2 Tools for n_maoﬁo_.m e 211
193 References .165

Table Of Contents Xiv Table Of Contents

Part 1

Global View

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

1 Overview

This chapter is currently being drafted by the management team but as an introduction it relies heavily
on knowing the exact content of the other chapters which is only emerging clearly with the first draft.
Therfore this chapter will probably only appear after the first draft.

1.1 Main system requirements

1.1.1 From physics

1.1.2 From performance (Read-out, selection)

1.1.3 Functional and operational

1.2 System functions

1.2.1 Detector R/O

1.2.2 Event selection/rate reduction

1.2.3 Movement of data

1 Overview 3

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

1.2.4 Storage of data (events, conditions, etc.)

1.2.5 Experiment Operation

1.2.6 Detector controls

The principal task of DCS is to enable the coherent and safe operation of the ATLAS detector. It
supervises all hardware of the experimental set-up, not only the different subdetectors of AT-
LAS, but also the common experimental infrastructure. It also communicates with external sys-
tems like the infrastructure services of CERN and most notably with the LHC accelerator.

Safety aspects are treated by DCS only at the least severe level. This concerns mainly questions
of sequencing operations or requiring conditions before executing commands. Also tools for in-
terlocks both in hardware and in software are provided by DCS. Not in realm of DCS are situa-
tions, which could cause major damage to the detector or even endanger people's lives. The
former is the responsibility of a dedicated Detector Safety System (DSS), with which DCS inter-
acts, and the latter is addressed by the CERN-wide safety and alarm system.

It is mandatory that concerning the hardware of the detector all actions initiated by the operator
and all errors, warnings and alarms are handled by DCS. It has to provide online status infor-
mation to the level of detail required for global operation. Also the interaction of equipment ex-
perts with their subdetector should normally also go via DCS. DCS has to continuously monitor
all operational parameters, signal any abnormal behaviour to the operator and give him guid-
ance. It must also have the capability to automatically take appropriate actions if necessary and
to bring the detector in a safe state.

Concerning the operation of the experiment, an intense interaction with the DAQ system is of
prime importance. Good quality physics data requires detailed synchronisation between the
DAQ system and DCS. Both systems are complementary in as far the DAQ deals with the data
describing a physics event and DCS treats all data connected with the hardware of the detector.
The former are organised by event number and the latter are normally categorised with a time
stamp. The correlation between both is established in offline analys

Some parts of the detector will operate continuously because any interruption is costly in time
or money or may even be detrimental to the performance of that detector. Hence its supervision
by DCS is needed continuously. DAQ in contrast runs only when physics data are taken. There-
fore DCS needs complete operational independence. This must however not result in bounda-
ries, which limit functionality or performance. Therefore both share elements of a common
software infrastructure. Different modes of operation are foreseen like taking data with collid-
ing beams, detector calibration, and stand-alone operation of a subdetector or even of an indi-
vidual detector element.

4 1 Overview

ATLAS
High-Level Triggers, DAQ and DCS

Technical Design Report
30 June 2003

1.3 Types of data TDAQ deals with

1.3.1 Detector control values

1.3.2 Event data

1.3.3 Configuration data

1.3.4 Conditions data

1.3.5 Statistics and monitoring data

1.4 Glossary

1.5 References

1-1
1-2

1 Overview 5

ATLAS

High-Level Triggers, DAQ and DCS

Technical Design Report
30 June 2003

1 Overview

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

2 Parameters

This chapter is dedicated to the relevant parameters for the HLT/DAQ/DCS system. These in-
clude the detector readout parameters and the trigger selection for the correct dimensioning of
the dataflow system and for understanding the data volumes that will need to be stored. These
will be the subject of the first three sections.

Other important parameters for the correct definition of the system are the ones coming from
the monitoring requirements. These are discussed in the fourth section.

The last section is dedicated to the DCS parameters: the subdivision of the system in detector
parts and the amount of configuration data traffic in case of cold configuration and re-configu-
ration of possible faulty elements.

2.1 Detector R/O parameters

This section could be moved to Section 1.2.1, "Detector R/O".

The ATLAS detector organized into three main systems: the Inner Detector, the Calorimetry and
the Muon Spectrometer. These systems are then subdivided in sub-detectors.

The Inner Detector is divided in the following sub-detectors: Pixel, SCT and TRT. The Pixel sub-
detectors is a detector using the pixel technology with a readout divided in ¢ regions and it is
sub-divided in two endcaps, one inner barrel B-layer and 2 outer barrel layers. The SCT sub-de-
tector is a Si microstrip detector subdivided into two endcaps and a barrel part subdivided in
two regions for positive and negative n. The TRT sub-detector is a straw tubes tracking detector
providing a particle identification based on the transition radiation.

The Calorimetry is a large system made of several sub-detectors based on different technolo-
gies. The barrel electromagnetic, the endcap electromagnetic, the endcap hadronic and the for-
ward calorimeters use the LAr as sensible media with different absorbers depending on the
particles to be detected. The barrel hadronic calorimeter and two endcaps at larger radii (with
respect to the other calorimeters) in the range |n|] < 1.7 is instead based on scintillator-iron
technology: the Tilecal calorimeter.

The Muon spectrometer is subdivided in a barrel part where there are precision chambers based
on Monitored Drift Tubes (MDTs) and trigger chambers based on Resistive Plate Chambers
(RPCs). In the two endcaps up to |n|< 2.4, there are again MDTs as precision chambers and
Thin Gap Chambers (TGCs) as trigger chambers. At large pseudo rapidities and close to the in-
teraction point there are Cathode Strip Chambers (CSCs) that are suited to sustain the higher
rate and the more severe background contitions.

In terms of readout signals to be transmitted to the Data Acquisition (DAQ) system, the LVL1
Trigger is another source of data and dedicated ReadOut Drivers (RODs) are used.

The organization in terms of readout is in fact slightly different from the pure division of the de-
tector in sub-detectors and it is illustrated in the first sub-section, where a mapping of the AT-
LAS detector and trigger is specified in terms of data sources (the RODs) for the DAQ system in
terms of the partitioning.

2 Parameters 7

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

The concept of a partition used throughout this chapter coincides with the TTC partition con-
cept introduced by the LVL1 TDR.

2.1.1 RODs per detector per partition

The distribution of the ROD modules and crates per sub-detector and partition generally fol-
lows the division of the sub-detectors in parts. This distribution assumes that there is no overlap
of hardware among partitions and that each partition can be independently functional.

In Table 2-1 the number of RODs, ROD crates and ROLs are reported per sub-detector per parti-
tion.

Table 2-1 The distribution of the RODs per detector per partition.

Detector Partition RODs ROD partitions ROLs Frag size (MB)
crates
Pixel 120 8 3 120 13
B Layer 44 3
Disks 12 1
Layer1+2 38+26 4
SCT 92 12 4 92 16
m Left Barrel 22 3
m Right Barrel 22 3
m Left Endcap 24 3
m Right Endcap 24 3
TRT 256 22 4 256 1.0
Barrel A 32 3
Barrel C 32 3
Endcap A 96 8
Endcap C 96 8
8 2 Parameters

ATLAS

High-Level Triggers, DAQ and DCS

Technical Design Report
30 June 2003

Table 2-1 The distribution of the RODs per detector per partition.

Tilecal 32 4 4 64 11
Barrel A 8 1
Barrel C 8 1
Ext Barrel A 8 1
> Ext Barrel C 8 1
m LAr 192 16 6 768 14
M EMB A 56 4
mw EMBC 56 4
EMEC A 35 3
EMEC C 35 3
FCAL 4 1
HEC 6 1
MDT 192 16 4 192 1.0
Barrel A 48 4
m Barrel C 48 4
m Endcap A 48 4
m Endcap C 48 4
& | csc 2 2 2 32 0.2
m Endcap A 8+8 1
3 Endcap C 8+8 1
RPC 32 16 2 32 1.0
Half Barrel 1 16
m Half Barrel 2 16
m TGC 16 8 2 16
W Endcap A 8
Endcap C 8
MIROD 1 1 1 1 0.104
° CPIJEP Rol lor2 6 0.252
s cp 1 16 15
H__ JEP 16 11
2
PP 8 16
] CTP 1 1 0.012—0.038

2 Parameters

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

These are the basic parameters updated during the 3rd ROD Workshop held in Annecy in No-
vember 2002. The fragment sizes reported in Table 2-1 have to considered as the maximum ex-
pected fragment size during the first phases of the ATLAS data taking and during the
calibrations. A more accurate estimation of the fragment sizes is discussed in the next subsec-
tion (Section 2.1.2).

Concerning the LAr fragment size a more accurate estimation is on going in the community. It is
based on both a compression of the data required and on zero-suppression schemes, but due to
their nature it cannot be expressed in a straightforward way in a table like Table 2-1.

2.1.2 Fragment sizes per detector
Includes physics and calibration data.

Should have average values, spread and uncertainties; should be shown against luminosity; and against
data compression schemes.

The fragment sizes reported in the previous table are indicative and they have to be seen as the
maximum achievable figures.

Investigations are ongoing to obtain more realistic numbers for physics and calibration operations to re-
solve discrepancies with the values used in the Paper Model. The Detector people have to be contacted and
an agreement on the numbers has to be found, based on the latest simulation they have for the sub-detec-
tor readout.

Table 2-2 ROBIn raw data fragment sizes in kByte used for the paper model. To each fragment a header with a
size of 32 Bytes is added

Subdetector Low luminosity Design luminosity
Pixels 0.2 0.50
SCT 0.33 1.20
TRT 0.33 1.20
E.m. calorimeter 0.752 0.752
Hadron calorimeter 0.752 0.752
Muon precision 0.80 0.80
Muon trigger 0.38 0.38

2.2 Trigger parameters

2.2.1 LVL1rates

For estimating message rates and the volume of data to be transferred to the LVL2 trigger and to
the Event Builder, the LVL1 accept rate, the nature and quantity of “regions of interest” (Rols)

10 2 Parameters

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

found by the LVL1 trigger, and the accept rate of the LVL2 trigger need to be defined. Two base-
line “LVL1 trigger menus” are used in this report:

1. “low luminosity”: for a luminosity of 2.1033 cm-2s-1 with a LVL1 accept rate of about 20
kHz and a predominantly high transverse momentum trigger. The LVL2 accept rate is
about 600 Hz,

2. “design luminosity”: for a luminosity of 1034 cm-2s-1 with a LVL1 accept rate of about 35
kHz. The LVL2 accept rate is about 1.5 kHz.

Editor: Note that the rates expressed above should be mutiplied by a factor of 2 to 3 uncertainty to get the
LVL1 input rates which the TDAQ system should be able to handle, namely 40 kHz at the low luminosity
and 75 kHz at design luminosity.

The exclusive rates for the different menu items are specified in Table 2-3. E.m./gamma (EM,
the I refers to “isolated”), muon (MU), jet (J) and hadron (TAU) Rols are distinguished, and la-
belled with the LVL1 energy or transverse momentum threshold. XE refers to the LVL1 missing
energy trigger. For a discussion of these menus see Chapter 4, "Event selection strategy” (NB: 5
kHz of “Other items” are not taken into account).

ies are indicated.

Table 2-3 Exclusive rates for the LVL1 trigger menu items. For items for which two possil
the latter corresponds to design luminosity

LVL1 Trigger menu item Low luminosity (kHz) Design luminosity (kHz)
MU20 0.8 4.0
2 MU6 0.2 1.0
MU10 + EM15I 0.1 0.4
EM251 / EM30I 12.0 22.0
2 EM151 /7 2 EM20I 4.0 5.0
J200 / J290 0.2 0.2
3J90 7 3)130 0.2 0.2
4J65 / 4390 0.2 0.2
J60+XE60 / J100+XE100 04 0.5
TAU25+XE30 / TAU60+XE60 2.0 1.0

2.2.2 Parameters relevant for LVL2 processing

The data needed for the LVL2 trigger and the type of processing performed by it depends on the
regions of interest supplied by the first level trigger. Each of the four different types of Rols has
its own characteristic type of processing. The processing consists of several steps and after each
step a decision is taken on whether data from other subdetectors within the region of interest
should be requested for further analysis. In Table 2-4 the subdetectors are indicated from which
data are requested in the different processing steps. The associated acceptance factors are also
specified in Table 2-4. The data rates can be estimated using these factors and information on
the sizes and the locations of the regions of interest, and on the mapping of the detector on the
ROBIns. The LVL1 trigger defines a finite number of possible Rol locations. A small region in
eta-phi space corresponds to each location. A hit in this region satisfying appropriate LVL1 trig-

2 Parameters 11

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

ger criteria generate a Rol with a location corresponding to the region. The relative Rol rate for
each location is assumed to be proportional to the surface of this region, while the sum of the
rates for all possible locations should be equal to the LVL1 menu Rol rate. This makes it possible
to determine the rate for each possible location. In combination with the Rol sizes (see Table 2-5)
and the mapping of the detector on the ROBIns the Rol data request rates for each ROBIn can be
calculated. Information on the mapping can be found in ref. (backup document on paper
modelling).

Table 2-4 Subdetector data requested by different processing steps of the LVL2 trigger for the different types of
Rols and associated acceptance factors. The acceptance factors are relative to the LVL1 Rol rate.

Acceptance Acceptance
Type of Rol First step factor Second step factor Third step
EM E.m. calorime- 0.19 (design ~ Hadron calo- 0.11 (design ~ TRT /SCT/Pix-
ter lum.: 0.16) rimeter lum.: 0.16) els
JET E.m. and 1.0
hadron calo-
rimeters
TAU E.m. and 0.2 TRT /SCT/Pix-
hadron calo- els
rimeters
MUON Muon preci- 0.39 SCT/Pixels 0.086 E.m. and
sion and trig- hadron calo-
ger detectors rimeters (only
for design
luminosity)
Table 2-5 LVL2 Rol sizes
Type of Rol Size in eta Size in phi
EM 0.2 0.2
JET 0.8 0.8
TAU 0.2 0.2
MUON ~0.3-0.4 (depends ~0.1-0.4 (smallest

muon and in
inner detector)

on detector)

In order to establish the processing resources needed for the LVL2 trigger the algorithm execu-
tion times and the overheads for sending requests and receiving data are needed. See Table 2-6
for current estimates, assuming execution on 4 GHz machines. The numbers specified include
estimates of the time needed for data preparation. Furthermore for each message sent or re-
ceived an overhead of 10 microseconds is taken into account, while the processing step result-
ing in a decision is assumed to take 50 microseconds. Merging of event fragments into a larger
fragment suitable for input in the algorithms is assumed to proceed at 160 MByte/s.

12 2 Parameters

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Table 2-6 Estimated execution times (in ms) of LVL2 algorithm steps on a 4 GHz processor and for low and
design luminosity respectively. The estimated time needed for data preparation has been included in the Rol
processing times. The algorithm execution times are the m_95 values (see chapter ...)

Type of Rolor Muon

trigger detectors Calorimeters TRT SCT + Pixels

EM 0.088/0.123 (e.m.) 8.33/24.56 1.36/3.88
0.023/0.032 (hadron)

JET 0.68/0.68

TAU 0.044/0.061 (e.m.) 8.33/24.56 1.36/3.88

0.011/0.016 (hadron)

MUON 0.5/0.5 0.044/0.061 (e.m.) 8.33/-- 1.36/3.88
0.011/0.016 (hadron)

2.2.3 Parameters relevant for Event Builder and Event Filter

Events need to be fully built at a rate equal to the acceptance rate of the LVL2 trigger (0.6 or 1.5
kHz) and then to be analysed by the Event Filter. The Event Filter is expected to reduce the rate
by a factor of 10 (see ch. ...) with a typical processing time of 1 second per event, which requires
a farm of at least 600 or 1500 processors.

2.3 Datarate summaries

The LVL2 system and the Event Builder both send requests for data to the ROBIns. The rate of
the requests from the Event Builder is equal to the event building rate, i.e. 0.6 or 1.5 kHz. The
rate of LVL2 requests per ROBIn is presented in Table 2-7. The total data volume output per
ROBIn is shown in Table 2-8, the size and properties of the LVL2 farm in Table 2-9 (assuming the
use of 4 GHz dual-CPU machines, a utilization of 70% of the available CPU capacity, with the
number of machines increased with a safety factor of 20% , and for direct connection of the
ROBIns to the network), and the total bandwidth required for data transporting from ROBIns to
the LVL2 system and to the Event Builder in Table 2-10.

Table 2-7 LVL2 request rate per ROBIn in kHz, “overall average™ averaged over all ROBIns, “maximum aver-
age”: time average for the ROBIn with the highest average number of requests

Muon Muon E.m. ca- Hadr. ca-
Luminosity trigger precision lorimeter lorimeter TRT SCT Pixels
Low 0.020 0.044 0.449 0.470 0.034 0.107 0.134
(overall average)
Low 0.040 0.061 1.192 0.771 0.044 0.148 0.197
(max. average)
Design 0.099 0.215 0.659 0.527 0.012 0.271 0.340
(overall average)
Design 0.198 0.298 1.754 0.866 0.016 0.373 0.491

(max. average)

2 Parameters 13

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Table 2-8 Output data volume per ROBIn in MByte/s (LVL2 data and data sent to the Event Builder), “overall
average”: averaged over all ROBIns, “maximum average”: time average for the ROBIn with the highest average
number of requests

Hadron

Muon Muon E.m. ca- ca-
Luminosity trigger precision lorimeter lorimeter TRT SCT Pixels
Low 0.516 0.265 0.822 0.839 0.229 0.256 0.170
(overall average)
Low 0.533 0.272 1.405 1.075 0.233 0.271 0.185
(max. average)
Design 1.331 0.707 1.692 1.589 1.863 2.182 1.245
(overall average)
Design 1.413 0.741 2.551 1.855 1.868 2.307 1.325

(max. average)

Table 2-9 Total bandwidth required for transport of event fragments in MByte/s

Low luminosity Design luminosity
Total bandwidth LVL2 traffic 318 510
(MByte/s)
Event Building rate (kHz) 0.6 15
Total bandwidth traffic to Event 604 2017

Builder (MByte/s)

Table 2-10 LVL2 farm size, message rates and data volumes per L2PU

Low luminosity Design luminosity

LVL2 farm size 37 72
Fragment rate in = request rate 11.6 9.0

out per L2PU (kHz)

Fragment volume in per LVL2 8.6 7.1
processor (MByte/s)

Decision rate per L2PU (kHz) 0.54 0.48
14 2 Parameters

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

2.4 Monitoring requirements

2.5 DCS parameters

2.5.1 Data Volumes and rates

The DCS systems will be configured using ConfDB. PVSS (already mentioned and ‘defined’?)
systems (DPTs, DPs, managers/drivers used etc.) will be configured and all associated soft-
ware, such as hardware drivers(?), OPC servers, configuration files for ‘external’ applications
(e.g. DDC) set up using information from ConfDB.

This ‘system’ level configuration will not be done very often, i.e. only at times of hardware
modification (new equipment added, possibly equipment changed). Data volume large due to
high number of separate systems (100 PCs?) though fast data rate not required as this is not a
real time operation and should only be performed during shut-down periods.

During operation of the LHC, various operating modes are required for each sub-system. These
modes require hardware to have different settings. A recipe is defined as a collection of settings
used for a given operating mode. For a given run, more than one recipe may be required at dif-
ferent stages of the run (e.g. beam starting, beam on, beam stopping).

This ‘operating mode’ configuration is completed more often than the system level configura-
tion. Before a run starts, any recipes used will be downloaded from the ConfDB and stored lo-
cally with each system (data consistency problem - may need to lock ConfDB at a given time
before download). The data is then loaded into the running system and applied at the time it is
required. The data volume is lower than that for system configuration, though still quite large
as there are many systems, each requiring a number of ‘stages’ containing all values to be set.
Data rate required not high as the downloading is completed before a run starts (how long be-
fore?) and therefore, real-time download is not required.

Information held in ConfDB. System set up (system names in which PCs, manager lists, external
application lists, configuration file(?) for external applications or at least information to allow
these files to be produced, DDC, DPTs, DPs, addressing, dp functions, command transfer, mes-
sage transfer). Recipe set up (original values, archiving, CondDB output configuration, alert
limits, action scripts).

The CondDB will be used to store data read from DCS system. irectional link desirable to al-
low data from both DCS and TDAQ to be correlated and displayed in PVSS. However, main di-
rection is from DCS to CondDB. Desirable to put all values into CondDB (i.e. not only that ‘data
required for off-line’). Data volume will be high (~1,000,000 channels plus others) though data
rate could be low if data not sent in real time (possibly downloaded every 15mins/1 h/12 h/
etc.).

2 Parameters 15

ATLAS
High-Level Triggers, DAQ and DCS

Technical Design Report
30 June 2003

2.6 References

2-1 3rd ROD workshop

2-2 Inner Detector TDR

2-3 LAr Calorimetry TDR
2-4 Tilecal TDR

2-5 Muon Spectrometer TDR
16 2 Parameters

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

3 Operationial requirements for the TDAQ system

Why this chapter? While Chapter 2, "Parameters", somehow says what is required from TDAQ in terms
of performance, this chapter should highlight what is expected by TDAQ when it is “used”.

The chapter contains the description of:
a. how an event is identified, at different levels in TDAQ.

b. What are the global TDAQ states. What are the detector and machine states. Includ-
ing how TDAQ states relate to the detector and machine states. The global state
transition

¢. The defition of a run. How runs are identified. How an event is uniquely identified
throughout the life of ATLAS. Types of runs. The question of the transition between
runs. What is allowed during a run, what is done outside the run.

d. Partitioning: definition, operations

e. The general strategy to react to faults and errors (in TDAQ but also, and mainly,
caused by external systems, such as the detector).

f. The role of data bases, what kind of data is permanently stored for what purpose
(and where?).

3.1 Event identification

Up to acceptance by level-2 (or event building in the case of a partition without level-2) an event
is identified by an extended (32-bit) level-1 ID (generated by level-1 as 24-bit number and ex-
tended to 32).

A Global Event Number (GID) uniquely identifies an event, accepted by the level-2 trigger,
within a run. It is generated by a central element (today it could be the DFM) after the LVL2 de-
cision and it is made available, to be tagged into the event, to the element responsible for build-
ing the full event (today this would the SFI).

3.2 TDAQ states

We define 1) the DAQ states, 2) the detector (i.e DCS) states (relevant to TDAQ) and the ma-
chine states relevant to TDAQ. Followed by the global TDAQ state machine.

The DAQ states as currently defined by the TDAQ Global Issues Working group in the the doc-
ument “Run and States” are: Idle, Initial, Loaded, Configured, Running, Paused. There is also a
transition which is sometimes refered to as a state and it is called Checkpoint. These are illus-
trated in the state transition diagram shown in Figure 3-1

3 Operationial requirements for the TDAQ system 17

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

INITIAL
load
unload
LOADED
unconfigure configure

CONFIGURED

stop start

abort

RUNNING

PAUSED

continue

Figure 3-1 DAQ states and transitions diagram

3.3 Therun

3.3.1 Run and Run Number
Definitin, purpose, where it is set into the event, who does it, how it is done.

A run is a period of data taking in a TDAQ partition with a defined set of stable conditions relat-
ed to quality of physics. Note: define what are conditions

The run number uniquely identifies a run (today it is a 32 bit number), and associates an event
to a set of stable conditions.

A run number is unique throughout the lifetime of the experiment. A run number is generated
by a central service, upon request by the run control application.

The proposed mechanism to include the run number into the event is based on the TDAQ run
control system (or some other online application program) to distribute the run number (at the
beginning of a run) to the ROD crate controllers. The RODs then insert the run number into the
fragment header for each event.

In this way, any event fragment is identified anywhere in the system by its associated run
number.

18 3 Operationial requirements for the TDAQ system

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

3.3.2 Requirements

The ATLAS TDAQ system is required to minimise its contribution to the experiment down
time; although a quantitative definition of this requirement is not yet available, one can antici-
pate that the experiment down time due to TDAQ must be well below 1%.

There are two contributions to system down-time which are relevant to the subject of this docu-
ment:

= the time spent by the system to initiate (start) or terminate (stop) a run, and

= the down time when coping with malfunctioning TDAQ components.

The two contributions above have an important impact on:

= how a run is defined, that is what configuration and parameter changes force a new run
and what changes do not force a new run,

= how the transition between runs should be implemented, and

= how faults should be handled during a run.

It is difficult to identify precisely the conditions which characterise the quality of physics, hence
a run. Nevertheless we could identify three classes of such conditions: the parameters defining
or affecting the selectivity of the triggers (LVL1, LVL2 and EF), the set of sub-detectors partici-
pating to the TDAQ partition, the operational parameters of sub-detectors. A modification of
any of the above conditions forces a new run, that is the events following the change of the con-
ditions are tagged with a new run number.

Conditions whose change forces a new run are stored in a conditions data base, whose contents
are saved to permanent storage prior to the start of a new run.

Changes which do not force a new run include for example the removal or the insertion of proc-
essors or the disabling of FE channels (insofar as the physics is not affected)l. Those changes
which do not force a new run are not stored in the con ns data base. The change may be en-
tered for example in an electronic experiment logbook if it affects the performance of the TDAQ
system (e.g. removal of an EF processor) or tagged into the event if it affects the data from the
detector. As an example of this latter: the removal of a ROD/ROB may be flagged by the corre-
sponding ROS by appropriately setting a “quality flag” in the fragment header.

A run, when conditions do not change, may extend throughout an entire machine fi

1. The number of e.g. FE channels (or ROBs) which can be removed from the read-out without affecting
the physics is bounded by some threshold which is sub-detector dependent. When the amount of una-
vailable read-out exceeds the threshold, the physics is affected and the run should be stopped.

3 Operationial requirements for the TDAQ system 19

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

3.3.3 Physics and calibration runs

Define what they are: what is their purpose, the actors (i.e. what a run type needs), where out-
put goes.

Backup document on use cases?

3.3.4 Operations during a Run

There is the need for an activel run, i.e. following the successful execution of the run start com-
mand, to be interrupted temporarily: level-1 triggers are not generated so that some change or
intervention on the detector can be done. Changes and interventions are such that they do not
affect the physics, that is they do not force a new run. The global system state associated to the
temporary interruption of a run is called Paused.

Two commands are available to respectively enter and exit the Paused state: pause and contin-
ue. Pause and continue commands may be issued: by an operator or by software (viz. an expert
system).
When the pause command is issued:

= The level-1 triggers are blocked, by raising the global busy signal.

= All TDAQ elements are issued with the Pause command. Each element will execute it lo-
cally as soon as the handling of the current event is terminated (i.e. TDAQ elements will
not empty their buffers before entering the paused state).

= TDAQ completes the transition to Paused as soon as all the TDAQ elements have entered
the Paused state.
When the continue command is issued:

= All TDAQ elements are issued with the continue command, each element returns to the
running state.

= TDAQ completes the transition to the running state as soon as all the TDAQ elements
have returned to the running state.

= At this point level-1 triggers are unblocked.
There is another special command which may be issued to a running TDAQ system, the Abort

command. This command is reserved for very special cases and it entails a fast termination of
the run; for example TDAQ elements will not complete the processing of events in their buffers.

3.3.5 Transition between Runs

From the operational point of view, a run is bracketed by a (run) start and a (run) stop com-
mand. These commands have to be sent to alll- the TDAQ elements (viz. processors) for syn-
chronous local execution prior to the transition to the running state or to the stopped state.

1. TDAQ is said to be in the running state.

20 3 Operationial requirements for the TDAQ system

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Prior to the start of a run, or as the immediate consequence of a (run) stop command, the LVL1
Busy is asserted. The LVL1 Busy is removed upon the transition to the running state, this latter
implies that alll: TDAQ elements have completed their local execution of the (run) start com-
mand.

The completion of a run is also a process which needs synchronous local processing of alll the
TDAQ elements: they receive the stop command, complete the processing of the contents of
their buffers, produce end of run statistics etc. and leave the running state.

In addition to the run control command which signals a TDAQ element when a run is requested
to complete, a mechanism is necessary to determine when the last fragment or event of the ter-
minating run has been processed. This mechanism cannot be part of the run control, it is tightly
related to the flow of the event data in the TDAQ system. This is done by means of a time-out: a
TDAQ element will consider that the last event has been processed when 1) it has received the
“stop run” command and 2) it has not received events for a certain time (for example a time out
of some 10s of seconds).

The transition between two runs (i.e. stopping the previous and starting the next) includes two
potentially time consuming processes:
= the completion of the processing of the contents of all the fragment/event buffers in the
system: front-end buffers, RODs, ROBs, LVL2 and EF nodes;

= the synchronisation of alll the TDAQ elements to complete the transition stopped/
running or running/stopped. That is, before the TDAQ partition may complete a state
transition, alll- the TDAQ elements have to have completed the transition locally.

There are conditions, for example the LVL1 trigger masks, thresholds and pre-scaling factors, or
sub-detector calibration operating parameters, such that:
3. the modification of their values forces the change to a new run and
4. their value may be required to change relatively often (may be several times per machine
fill).
The same considerations may also be applied to calibration runs, when some detector operating

parameter may be required to change frequently.

In these cases the transition between runs is not adequate in terms of the potentially long TDAQ
system down time. A more efficient transition between runs is required and we define:

Checkpoint

a transition in a running TDAQ system, triggered by a change in conditions or by an op-
erator, which 1) results in the following events to be tagged with a new run number and
2) does not need the synchronisation, via run control start/stop commands, of all TDAQ
elements.

The checkpoint transition is intended for those changes in conditions which require that events
be correlated to the new conditions via a new run number but the change has a light implication

1. Itis envisageable that, in the case of the LVL2 and the EF, only a (to be defined) percentage of the farm
needs to successfully perform the transition. The rest may do it “in the background” and join the new
run afterwords.

3 Operationial requirements for the TDAQ system 21

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

on most of TDAQ. It is a mechanism to associate a new run number to events characterised by
new conditions with minimal synchronisation within TDAQ.

A checkpoint transition is started automatically by the TDAQ control system when certain con-
ditions are modified, it may also be initiated manually by an operator or automatically by some
other software component (viz. an expert system). It should be noted that, for a transient time,
events belonging to more than one run could be simultaneously present in the system. In partic-
ular given that LVL2 accepts are not time ordered, a EF node might have to process events be-
longing to two (or in principle even more) different runs.

The main feature of the checkpoint transition is the fact that events keep flowing in the system
continuously: a mechanism is needed for a TDAQ element to detect when the new run begins.
That is to say when the new run number becomes applicable, when the Global Event ID should
be reset to 0 and when a TDAQ element should perform run completion processing and the ini-
tialisation necessary for a new run (for example a LVL2 processor may require to read the new
conditions).

The run number may be used for this purpose, i.e. a TDAQ element recognises a new run when-
ever a piece of data (fragment or full event) is tagged with a new run number. TDAQ elements
may therefore perform the “transition” from the old to the new run at their own pace and time.
Note that the same mechanism is also applicable to analysis and monitoring software dealing
with a statistical sample of the event data: an e.g. monitoring program recognises a new run
whenever it samples an event with a new run number (with the caveat that, as for EF processing
units, programs sampling events after Level-2 might have to handle events belonging to more
than one run). A condition (belonging to a well defined sub-set of the possible run conditions) is
changed or an operator asks for the execution of a checkpoint command.

3.4 Partitions and related operations

Defi

ion of what a partition is: what for, who are the actors participating to the partition.

Allowed partitons (here we should make reference to the constraints imposed by the TTC sys-
tem and include the table of the detector partitions).

What can be done with partitions: join and split.
Material from [3-2].

How partitioning is realised on the system is reserved to Chapter 5, ""Architecture™ (and possibly Part 2
System Components).

3.5 Operations outside a run

Define what are the operations allowed when a run is stopped or when LHC is off. “Define”
should include: the purpose of the operation, the actors, the expected result, the effect on
TDAQ.

Initialisation, configuration.

22 3 Operationial requirements for the TDAQ system

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Operations on partitions: split/join
A backup document with use cases would be useful (if can be done).

This section was moved wrt the original layout so as to come AFTER the section on partitioning (since
some of the operations might be done on partitions). It was also promoted one level up in the section hier-
archy

3.6 Error/Fault reporting/handling strategy
Brief description of the global strategy here as the details are in Chapter 6. Emphasis should be

given to 1) what TDAQ does when an internal error happens and 2) what TDAQ does when a
fault happens outside TDAQ (but the fault affects the operation of the system).

3.7 Data Bases
What has to be stored permanently? at least give some broad categories and the source of the

data. Then list what is the required functionality of the data base system(s). For example data
related to configuration, conditions, monitoring, etc.

Material from this section should come from the efforts going on to collect requirements on data bases.

3.8 References

3-1 GIWG. Run and States
3-2 GIWG. Partitioning

3 Operationial requirements for the TDAQ system 23

ATLAS

High-Level Triggers, DAQ and DCS

Technical Design Report
30 June 2003

24

3 Operationial requirements for the TDAQ system

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

4 Event selection strategy

4.1 The approach

HLT as a coherent entity, use of complementary features of LVL2 and EF (if not discussed be-
fore)

emphasis on inclusive signatures, have more refined tools (other selection algorithms, more ex-
clusive/topological criteria etc) at hand

4.2 Selection objects

define (physics oriented) objects (e.g. e, mu, ...) to be used for the selection, describe in the fol-
lowing sub-sections the high-level (algorithm) steps to define candidate objects

4.2.1 Electron/photon
4.2.2 Muon

4.2.3 Tauljets/Etmiss

4.2.4 b-tagged jets

4.2.5 B-Physics

4.3 Trigger menus

define the basic trigger menu(s), covering the major part of the physics program

need to address various scenarios

4.3.1 Physics triggers

unprescaled signatures go here

4 Event selection strategy 25

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

4.3.2 Pre-scaled physics triggers

4.3.3 Monitor and calibration triggers

4.4 Physics coverage

describe the coverage (essentially impact of thresholds) on various physics processes of interest

4.5 Determination of trigger efficiencies etc.

4.6 References

41
4-2

26 4 Event selection strategy

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

5 Architecture

The purpose of the chapter is to describe the top level architecture of TDAQ, in terms of:
its place with respect to the other parts of ATLAS, as well as systems and services external to ATLAS,

how the system is organised: functionally, in terms of sub-systems and in terms of more abstract ele-
ments,

a generic architecture with a a definition of the abstract components that are visible at the architectural
level

how sub-systems map onto the generic architecture (“views”).
how the scalability and partitioning can be performed and
finally it proposes a baseline architecture expressed by the realisation of the abstratc components.

DCS is considered, as regards this chapter, as a black box with interfaces to TDAQ and external systems.
The internals of DCS do not belong to this chapter.

5.1 TDAQ context

5.2 Context Diagram

The ATLAS TDAQ context diagram is shown in Figures 5-1. The LVL1 trigger provides LVL2
with region-of-interest(Rol) and other data needed to guide the LVL2-trigger data selection and
processing; this interface is discussed in detail in part 2. The Timing, Trigger and Control (TTC)
system provides signals associated with events that are selected by the LVL1 trigger.
ReadOutDrivers(RODs), associated with the detectors, provide event fragments for all events
that are selected by the LVL1 trigger. In addition, the LVL1 system contains RODs which pro-
vide data to be read out for the selected bunch crossings. The LVL1 trigger system, the TTC sys-

5 Architecture 27

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

tem and the ROD systems of the detectors all need to be configured by the DAQ system, for
example at the start of each run. These components are shown in the top part of the diagram.

LVL1 trigger processors

ROI and other data
needed by LVL2

Read-Out Drivers (RODs) of
detectors (and LVL1 trigger)

TTC system

LVL1 trigger
Configuration signds
Configuration data
data

LHC machine

Experimental
infrastructure

High-Level Triggers,
DAQ, DCS

47 CERN technical

infrastructure
messages

messages

Event data

Datalogging of event data for

Offline databases for non- offline analysis

event data

Figure 5-1

Interfaces to other external systems are also illustrated in Figure 5-1. These connect to the LHC
machine (e.g. to exchange information on beam parameters), to the detectors (e.g. to control
voltages), to the experimental infrastructure (e.g. to monitor temperatures of racks), and to the
CERN technical infrastructure.

The remaining interfaces relate to long-term storage of data that must also be accessed for off-
line analysis of the event data. For events that are retained by the high level triggers, the event
data have to be stored for offline analysis. In addition, a large amount of non-event data has to
be stored: alignment and calibration constants, configuration parameters, etc. Not shown in the
figure is the importation of programs from the offline software for use by the high level triggers.

28 5 Architecture

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

5.2.1 TDAQ Interfaces

More in detail how the context elements and TDAQ interface; we also define what data is exchanged (who
is generating it, who is using it).

An interface is defined in terms of the partners (in TDAQ and outside TDAQ), who is responsible for the
interface (within TDAQ and outside TDAQ), what data flows in/out of the intreface and where the inter-
face is documented. It is proposed to split things in 2 parts: I/F internal to ATLAS, I/F with external (wrt
ATLAS) services and sub-systems.

Strong link of this section to Chapter 2, "Parameters".

5.2.1.1 TDAQ interfaces to ATLAS

Indicate what are the interfaces between TDAQ and ATLAS and reference where they are documented.

5.2.1.2 External interfaces

Given the external (i.e. non ATLAS) system and services as highlighted previously, define and reference
the interfaces (and indicate the responsibilities).

Finally a summary table, which for any given interface, as defined in the previous section, say what type
of data (viz. raw data) is exchanged. Possibly make references to data volumes/rates (where applicable) as
documented in Chapter 2, ""Parameters".

5.3 TDAQ Organisation

The purpose of the section is to show how TDAQ is organised (the system as such, not necessarily mana-
gerially) internally. The internal organisation is looked at from three perspectives: what function are per-
formed by TDAQ, how functions are associated to TDAQ blocks, and a very abstract categorisation of
internal elements. Generality (as opposed to implementation) and complementarity of views is stressed.

5.3.1 Functional decomposition

The TDAQ system provides the ATLAS experiment with the capability of: moving the detector
data (physics events) from the detector to mass storage, selecting, between detector and mass
storage, those events which are considered of physical interest, controlling and monitoring the
whole experiment.

The following functions are identified:

= Detector read-out: the data produced by one bunch crossing are stored in detector memo-
ries (RODs), an event is therefore split in a number of fragments: there are ~ 1600 of such
memories which have to be read-out at a rate of 75KHz into a set of TDAQ buffers (the
event memory for TDAQ).

5 Architecture 29

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

= Movement of event data: once buffered event fragments have to be moved to the high
level triggers and, for selected events, to mass storage. This is a complex process which
involves both moving small amounts of data at the level-1 trigger rate (the region of inter-
est data for the level-2 trigger at 75 KHz) and the full event (i.e. ~ 1MB) at the level-2 trig-
ger accept rate (few KHz).

= Event selection: TDAQ is repsonsible to reduce the rate and the data volume to the man-
ageable amount of ~ 100MB/sec; this is achieved by a sophisticated, 2-level, trigger sys-
tem.

= Event storage: events selected by the high level trigger system are written onto perma-
nent storage for further offline analysis.

= Controls and monitoring: this refers to the capability of i) operating and controlling the
experiment (detector, infrastructure, TDAQ) and ii) monitoring the state and behaviour of
the whole of ATLAS.

5.3.2 TDAQ building blocks and sub-systems

The ATLAS TDAQ system is designed to provide the above functions in terms of the following
building blocks:

= Read-Out System (ROS): event data is buffered, by the ATLAS detectors, in the RODs;
each ROD holding a fragment of the whole ATLAS event. The ROD fragments are read by
TDAQ into its own buffers, the “Read-Out Buffers” (ROBs). Logically, but not necessarily-
implementation-wise, there is an equal number of ROB buffers as there are ROD frag-
ments (indeed, see below, the level-2 trigger needs to access data at the level of the
individual ROD fragments). Event fragments are kept in the ROB buffers until they are ei-
ther moved downstream (accepted by the level-2 trigger) or they are removed from the
system (rejected by level-2). The depth of the ROB buffers is determined by the time need-
ed by level-2 to select events. The ROS provides individual event fragments, out of the
ROBs, to the level-2 trigger and to the event builder: in this latter case a further level of
buffering, multiplexing several individual ROBs into a single event builder input, may be
provided by the ROS.

= Level-2 trigger: the level-2 trigger, as detailed in XXXXX, uses a mechanism to selectively
read-out an event; that is, the level-2 trigger requests, as directed by the findings of the
level-1 trigger, a small fraction of the event fragments in order to take a decision on the ac-
ceptance/rejection of the event. The ROI mechanism, using input from level-1, defines
what fragments the level-2 trigger will need for a particular event. Appropriate fragments
are requested from the ROBs and used to decide on the acceptance or rejection of that
event. It is remarked that the level-2 trigger requests fragments on the basis of i) the level-
1 identifier and ii) the ROL number (as opposed to a ROB number).

= Event Builder: the event is kept in the form of many (~1600) parallel streams up to the de-
cision by the level-2 trigger. Any further reduction in the event rate needs working on the
complete event, hence the requirement for a component which merges all the fragments
of an event into a single place: the event builder.

= Event Filter (EF): another level of event rate reduction is provided by the event filter
which requests complete events from the SFI buffers and performs on them complex se-
lection algorithms.

30 5 Architecture

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

= TDAQ controls: the function in charge of the control and supervision of the whole TDAQ
system; this includes the initialisation and configuration of the TDAQ components. It also
includes those ancillary functions, such as sharing (non event data) information between
components.

= Detector controls: it represents the function in charge of controlling and monitoring all as-
pects of the ATLAS detector; it also includes the function of initialisation and configura-
tion of the ATLAS detector.

= Monitoring: it is the part of TDAQ in charge of i) the (event data based) monitoring of the
experiment and the operational monitoring of TDAQ.

Now explain that the work has been organised in terms of a dataflow, dcs, hlt, pesa, online sub-systems

5.3.3 Component categories

Here we characterise the components of TDAQ in terms of broad categories of elements: buffers, proces-
sors, supervisors and networks. It will be indicated what buffers (decouple parts of TDAQ, smooth differ-
ences in performances between parts of TDAQ), processors (selection at HLT level, monitoring, control),
supervisors (L2SV, DFM to control the flow of the data) and networks (transport the data) do in the sys-
tem.

In very broad terms the ATLAS TDAQ system is composed of :

= Buffers: they are used to decouple the different parts of the system: detector R/0O, level-2,
event builder and event filter. Because of the parallelism designed into the system, buffers
belonging to the same function (e.g. ROBs) are independent.

= Processors: to run event selection algorithms, to monitor and control the system. They are
organised in farms, groups of processors performing the same function.

= Supervisors: these elements coordinate the parallelism, in terms of assigning events to
processors and buffers, at the different levels: the level-2 trigger (RolB and L2SV), the
event builder (DFM) and event filter.

« Communication systems: they connect buffers and processors to provide a path for
tarnsporting event data or a path to control and operate the overall system. Communica-
tion systems are present at different locations in the system, some of them are switching
networks, others may be point to point links.

5 Architecture 31

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

5.4 TDAQ generic architecture

Now we put together and refine what we have said in Section 5.3, “TDAQ Organisation". The generic
architecture is built upon and justified on the basis of that section. A backup document may be needed if
more detail is required.

5.4.1 Architectural components

This is the list of the components which are visible at the level of the architecture, the list should include
what is relevant in terms of functions, building blocks and abstract elements. Should include the func-
tions and components identified in Section 5.3, "TDAQ Organisation™: ROD, ..., RolB, L2SV, online
software major components such as control, DB, etc. For each component the following information
should be provided: a definition or purpose (i.e. its function), and required performance. This section is
neutral with respect to possible implementations. Why generic (and “unorthodox’”) names such as RRC
and RRM, ROB instead of ROBin? The intent is to indicate that at that point in the system something is
needed with a certain functionality (to connect and possibly mpx ROLs to ROBs, etc.).

The general, implementation independent, ATLAS TDAQ architecture is presented. Note that we
have carried forward most of the design originally presented in the ATLAS TP (1994), DAQ/DCS/HLT
TP (2000); note were choices have been made (e.g. level-2 requesting data).

The architecture is presented in terms of the functional breakdown of the previous sections. Ref-
erence to Chapter 2 is done to use/derive requried performance figures (based on the design L1
rate of 75KHz, some reference to the expected behaviour at 100KHz as well?).

5.4.1.1 Detector read-out

ROL (Read-Out Link): the communication link out of the detector buffers (RODs). Each ROD
may have one or more ROLs; each ROL corresponds to one event fragment. The ROL is expect-
ed to transport data at a rate equal to the maximum event fragment size times the maximum
level-1 rate (i.e. XXX MB/sec).

RRC (ROD to ROB connection): the connection between the ROL and the ROB may be multi-
plexed, that is to say one or more ROLs may be connected to a single ROB. Hence a functional
element in the system which represents how ROLs are multiplexed into ROBs. Figures on re-
quired bandwidhts

ROB: the detector fragments are read out of the RODs and stored into TDAQ buffers; depend-
ing on the level of multiplexing provided by the RRC component, one or more fragments may
be stored into a single ROB for the same event. Figures on buffer depth; input and output bandwidth.

RRM (ROB to ROS Multiplexor): in order to reduce the number of connections into the level-2
and event builder networks it is possible to funnel a number of ROBs into a single component.
The RRM represents this ROB multiplexing capability. Give figures on multiplexing capability
(based on ROB output bandwidth).

ROS (Read Out System): a component for serving data to the level-2 and event builder. It may
also be used to introduce a further level of buffering before the event builder.

32 5 Architecture

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003
54.1.2 Level-2:

RolB: the component which determines which fragments ought to be analyised by level-2 for a
particular event, based on information received from the level-1 trigger. (Note it runs at the L1
rate)

L2SV: The level-2 trigger supervisor (L2SV): the component which, for a given event accepted
by level-1, receives the information produced by the RolB, assigns a L2PU to process the event
and inputs the L2PU with the information provided by the RolB.

L2PU: the component which, using the information produced by the RolB, requests event frag-
ments from the ROS, process them and produces a decision (accept/reject) for an event. The de-
cision is passed to the ROS in order for this latter to remove (from the ROS buffers) or forward
(to the final part of TDAQ, the event filter) the event.

L2N (level-2 netywork): the switching network used to connect all the ROSes, level-2 processors
and supervisors for the purpose of moving ROI data and level-2 decisions between the TDAQ
buffers, level-2 processors and supervisory components.Note that data and control share the
same network. Figures on expected bandwidhs and rates.

5.4.1.3 Event Builder
DFM: the supervisory element which assigns an event, accepted by level-2, to an SFI.

EBN (Event Builder Network): the event builder will handle events at a rate of a few KHz; to
achieve this performance several events are built concurrently into many SFI’s by means of a
switching network which connects ROSes, SFIs and DFM. Note that data and (event builder)
control share the same network. Figures on expected bandwidhs and rates

SFI: the buffer where a full event is built prior to being moved to the event filter for further se-
lection. Target performance ~ 70MB/sec.

5.4.1.4 Event Filter:

EFP (Event Filter Processors): A farm of processors, to run the algorithms; including possibly a
supervisory component to assign events, available in the SFls, to event filter processors. Figure
on expected time/event.

EFN: A communication system connecting SFls, event filter processing unit and SFOs. Note that
the issue here will be one of connecting a lot of processing units more than actual volumes of data (ratio
processing to communication).

SFO: A set of memories, sub-farm output (SFO), to buffer the events accepted by the event filter
prior to writing the events to permanent mass storage. Again expect performance ~ 70 MB/sec

DCS (Detector Control System): at this level of architectural detail the detector control system is seen
as an unstructured entity which interfaces with the rest of TDAQ via the online network.

5 Architecture 33

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

5.4.1.5 Online:

OSF (Online Software Farm): the farm of processors on which the TDAQ software services, such

as the run control and the monitoring facilities. A single partitions and the whole experiment
are operated out of this farm.

DBS (Data Base Servers): the set of servers used to hold the data bases.

OSN (Online Software Network): a network connecting the Online software farm, the detector
control system as well as the controller and supervisors local to the TDAQ components. A more
detailed organisation of this network, showing which TDAQ elements have a controlle etc., is
provided below in the detailed component views. Some figures on expected performance and size of
the network.

34 5 Architecture

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

The generic architecture is shown pictorially in Figures 5-2.

Legend:

ROD - Read-Out Driver

RRC -ROD to ROB Connection
ROB —Read-Out Buffer

RRM - ROB to ROS Merger
ROS - Read-Out System
RQIB - ROI Builder

L25V — Level-2 Supervisor
L2M —Level-2 Netwark

L2P — Level-2 Processors
EEN — Event Builder Network
SFI - Sub-Farm Interface
EFM — Event Filter Network
EFP - EventFilter Processors
SFO - Sub-Farm Output

OSF —Online Software Farm

mA>FE-TOWN
ARXOE-MZ

Mass

) Storage

Figure 5-2 Generic diagram.

For missing details, one should refer to the “views” below to e.g. go into more details as regards their (the
view’s) parts. For example a ROB has a data flow view as buffer, but also a control view and a data base
view.

The drawing has to be corrected to show LVL1 and its connection to the ROIB, the relationship L2SV/
DFM.

5.5 TDAQ data flow architectural view

Specialise generic architecture for the purpose of Data flow.

Shall contain: functional decomposition into DF packages and sub-packages; interfaces and boundaries
between DF packages and sub-packages; main use-cases realisation; “Event control and event flow” view
which will include the rates and data volumes between DF packages and sub-packages (including type of
communication).

5.6 TDAQ controls and supervision view

Specialised generic architecture for the purpose of control and supervision (eg show local controllers).

5 Architecture 35

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Includes both DCS and Online controls.

Cornérof View

TDAQ Control

= J‘l
. Y. e
mxnm:Jm Systems EENES et
“““““““
- BE FE —™i ROD- Crate -4— o, ST |
l
CCERM > TBE FE e Pe—Cn: crate o
} |
iagnet = "BE FE — ™ ROD=Crate™ o
e
oS - _— — s
““““““““ BE FE Dis Co °F Tona -]
DCs_Is ™ m—
HLT e

Detector Control

Remarks to this view:

This view has been chosen to illustrate the relation between the TDAQ Control and the DCS Control. Ex-
planations and some reasons for choosing this view are listed below.

Arrows represent the direction of command flow.

Lines without arrows represent infomation exchange which is vital for correct decision making by
the master control unit (see later for which control is the master depending on the operational sta-
tus). Component boxes represent logial entities.

Systems expernal to Atlas are shown where they have a vital importane to the experiment control.
The master control must have knowledge of the machine status in order to take correct decisions.

e LHC: LHC machine status; CERN: Cern infrastructure; Magnet: Magnet status; DSS: Detector
Safety System

During data taking periods when TDAQ Control is active it has master control over the TDAQ
system and the Detector control system.

« Outside data taking periods, when TDAQ Control is not active, the Detector Control system stays
fully operational and controls all its connected units.

Each detector can be controlled independently both from the TDAQ Control including the Detec-
tor Control during data taking periods, for example during installation and test phases, or outside
data taking periods via Detector Control.

* The Command flow from TDAQ Control to Detector Control is performed from the TDAQ control
at the level of the different detectors.

The presented components will be expanded and explained in more detail in the chapter on Experi-
ment Control, when necessary details have been explained in the chapters on components and in-
terfaces.

36 5 Architecture

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

5.7 Information sharing services view

Specialise the generic architecture for the purpose of information sharing services provided by the online
software.

There are several arias where the information sharing is used in the TDAQ system: synchronisa-
tion between processes, error reporting, operational monitoring, physics event monitoring, etc.
There are different types of information which TDAQ applications may share in different cases.
The Online Software provides a number of services to support all the possible types of informa-
tion exchange between TDAQ software applications.

As it is shown on Figure 5-3, each of those services acts as a common communication bus for all
the TDAQ systems and detectors. Information can be shared between applications belonging to
the same TDAQ system, among several TDAQ systems, and to each of the TDAQ systems and
detectors.

Data HLT DCS Online

Detectors LVL1
Flow Software

Information Sharing Services

Figure 5-3 Information Sharing context diagram

All the Information Sharing services are partitionable in a sense that different instances of the
same service are able to work in different TDAQ Partitions concurrently and fully independent-
ly.

5.8 TDAQ data base view

Data base architecture: including where access to (in and out of) databases is done.

Remark: This is a very basic view of the databases in TDAQ. It is expected that more details can be
presented when a common understanding is reached on the sharing of non-event data accross DCS,
DAQ, HLT and offline systems. This will be the topic of discussion at the next ATLAS week and the next
Atlas Software workshop.

TDAQ and detectors are using configuration databases to describe their system topology and
the parameters which are used for data-taking. A variety of configurations can describe and
combine different combinations of existing partitions which are prepared for different types of
runs (physics, calibration, debug, shutdown, etc.).

5 Architecture 37

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

The TDAQ and detectors are using offline conditions databases to read and to store conditions
under which the event data were taken. Such databases are used by the offline group for
analysis and reconstruction of physics data and by the TDAQ experts to analyse logs of the
operational monitoring information stored during data taking by the online bookkeeper.

TDAQ &
Detectors

A

Configuration
Databases

Offline
Conditions
Databases

Figure 5-4

5.9 HLT view

The HLT issues relative to the generic architecture. It should probably include the organisation
of the EF and LVL2 blobs, how HLT gets at the data.

5.10 Partitioning

The definition of partitions and the allowed operations are defined in Chapter 3, "Operationial
requirements for the TDAQ system". We remind that partitioning refers to the capability of pro-
viding the functionality of the complete TDAQ to a subset of the ATLAS detector.

The definition of the detector subset defines, because of the connectivity between RODs and
ROBs, which ROBs belong to the partition. Downstream of the ROBs a partition is realised by
assigning part of TDAQ resource (EBN, SFI, EF, online farm and network) to the partition: itis a
resource management issue. In particular a subset of the ROBs, as mentioned above, and a sub-
set of the SFIs Note that this assumes that assigning SFls implies associating a sub-set of the EF farm; if
this is not the case then routing of events has to be done by the SFIs (see connection to TTC below).

As regards the transport of the data across the allocated resources, the DFM plays the key role of
routing subsets of ROBs to the associated subsets of the SFls. In order for this to happen, in the
case of partitions associated to non physics runs (i.e. when there is no level-2), the DFM must re-
ceive, via the TTC, the triggering information for the active partitions. Need for connections of up
to 35 TTC systems to DFM

5.11 Scalability of the system

How the generic arch. can scale in performance (probably with respect to LVL1 rate). Viz. what
has to be expanded, and how. A strategy which show that the architecture can scale.

38 5 Architecture

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

5.12 Baseline architecture implementation

The baseline would be defined in terms of a concrete implementation of the generic components defined
above (e.g. what is used to connect ROD to ROBs, the rob is a ROBIN, etc). It certainly should spell out
what the generic components are (for example a bus based ROS, a point to point link for the ROL) and
probably suggest a physical implementation (e.g. this switch is gigabit ethernet with this size). We could
also have a sub-section which indicates options (a small number) which one might wish to consider later
on.

The justification of the validity of the overall architecture is to be spelled out in Part 3 System Perform-
ance.

5.13 References

5-1 Document from Architecture working group on global architecture.
5-2 DataFlow Architecture document.

5-3 ROS Architecture document.

5-4 Data Collection Architecture document.

5 Architecture 39

ATLAS

High-Level Triggers, DAQ and DCS

Technical Design Report
30 June 2003

40

5 Architecture

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

6 Fault Tolerance and Error Handling

6.1 Fault Tolerance and Error Handling Strategy

Error handling and fault tolerance are concerned with the behaviour of the TDAQ system in the
case of failures of its components. By failure we mean the inability of a component to perform
its intended function. This includes both hardware and software caused problems.

The overall goal is to maximize system up-time, data taking efficiency and data quality for the ATLAS
detector. This is achieved by designing a robust system that will keep functioning even when
various parts of it are not working properly.

Complete fault tolerance is a desired system property which does not imply that each compo-
nent must be able to tolerate every conceivable kind of error. The best way for the system to
achieve its overall goal may well be to simply reset or reboot a component which is in an error
state. The optimal strategy depends on the impact the faulty component has on data taking, the
frequency of the error and the amount of effort necessary to make the component more fault tol-
erant.

The fault tolerance and error handling strategy is based on a number of basic principles:

= Minimize the number of single points of failure in the design itself. Where unavoidable,
provide redundancy to quickly replace failing components. This might consist of spare
parts of custom hardware or simply making sure that critical software processes can run
on off-the-shelf hardware which can be easily replaced.

g components must affect as little as possible the functioning of other components.

= Failures should be handled in a hierarchical way where first local measures are taken to
correct it. Local recovery mechanisms will not make important decisions, e.g. to stop the
run, but pass the information on to higher levels.

= All errors are reported in a standardized way to make it easy to automate detection and
handling of well-defined error situations (e.g. with an expert system).

= All errors will be automatically logged and be available for post-mortem analysis if neces-
sary. Where the error affects data quality the necessary information will be stored in the
condition database.

We distinguish the following cases:

Error detection describes how a component finds out about failures either in itself or neighbour-
ing components. Errors are classified in a standardized way and may be transient or permanent.
A component should be able to recover from transient errors by itself once the cause for the er-
ror disappears.

Error response describes the immediate action taken by the component once it detects an error.
This action will typically allow the component to keep working but maybe with reduced func-
tionality. Applications which can sensibly correct errors that are generated internally or occur in
hardware or software components they are responsible for should corrected them directly.

6 Fault Tolerance and Error Handling 41

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

In many cases the component itself will not be able to take the necessary action about failures in
a neighbouring component. Even if the component is unable to continue working, this should
not be a fatal error for the TDAQ system if it is not a single point of failure.

Error reporting describes how the failure condition is reported to a higher level which might be
able to fix the error condition. The mechanism will be a standardized service which all compo-
nents use. The receiver of the error message might be persons (like a shifter or an expert) or an
automated expert system.

Error recovery describes the process of bringing the faulty component back into a functioning
state. This might involve manual intervention by the shifter or an expert or an automated re-
sponse initiated by the expert system. The time-scale of this phase will typically be longer than
the previous ones and can range from seconds to days (e.g. in the case of replacing a piece of
hardware which requires access to controlled areas).

Error prevention describes the measures to be taken which prevent the errors to be introduced to
hardware or software. Good software engineering, the use of standards, training, testing and
the availability and use of diagnostic tools help in making the TDAQ system fault tolerant.

6.2 Error Definition and Identification

In order to respond to error conditions it is important to have a clearly defined TDAQ wide
classification scheme that allows proper identification. It is assumed that error conditions are
detected by data flow applications, controllers, event selection software and monitoring tasks.
These conditions may be caused by failures of hardware they control, of components that they
communicate with or these may occur internally.

The sources have a dual responsibility: correct anomalous conditions immediately or issue an
error message, suitably classified and containing all necessary information for subsequent ac-
tion by human or expert system.

Error messages are classified according to severity. The classification is necessarily based on lo-
cal judgement; it is left to human/artificial intelligence to take further action, guided by the
classification and additional information provided by the applications that detect the errors:

Additional information consists of a unique TDAQ wide identifier (note that status and return
codes, if used, are internal to the applications), determination of the source and additional infor-
mation needed to repair the problem. All messages are directed to an Error Reporting Service,
never directly to the application that may be at the origin of the fault.

For successful fault tolerance, it is essential that correct issuing of error messages is enforced in
all TDAQ applications.

6.3 Error Reporting Mechanism

Applications encountering a fault make use of an error reporting facility to inject an appropriate
message to the TDAQ system. The facility is responsible for the message transport and message
distribution. Optional and mandatory attributes can be passed with the message. The facility al-
lows receiving applications to subscribe to a message according to the severity or other qualifi-

42 6 Fault Tolerance and Error Handling

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

ers independent of its origin. A set of commonly used qualifiers will be recommended. These
can for example include the detector name, the failure type like hardware, network, software
failures, or finer granularity indicators like ‘Gas’, ‘HV’ etc. They provide together with manda-
tory qualifiers like process name and id, injection date and time, and processor identification
provide a powerful and flexible system logic for the filtering and distribution of messages.

6.4 Error Recovery Mechanisms

Error recovery mechanisms describe the actions which are undertaken to correct any important
errors that a component has encountered and can not handle on its own. The main goal is to
keep the system in a running state and minimize the consequences for data taking.

There will be a wide range of error recovery mechanisms, depending on the subsystem and the
exact nature of the failure. The overall principle is that the recovery for a failure should be han-
dled as close as possible to the actual component where it occurred. This allows both to isolate
failures to subsystems without necessarily involving any action from other systems, to decen-
tralize the knowledge required about properly reacting to a failure and to allow experts to mod-
ify the error handling in their specific subsystem without having to worry about the
consequences for the full system.

If a failure cannot be handled by a subsystem at a given level, it will be passed on to a higher
level in a standardized way. While the higher level will not have the detailed knowledge to cor-
rect the error, it will be able to take a different kind of action which is not appropriate at a lower
level (e.g. it might be able to pause the run and draw the attention of the shifter to the problem,
or to take a subfarm out of the running system and proceed without it etc.)

The actual reaction to the failure will strongly depend on the type of error. The same error con-
dition (e.g. timeouts for requests) may lead to quite different actions depending on the type of
component. A list of possible reaction is given in Chapter 6.5, "Typical Use Cases".

Each level in the hierarchy will have different means to correct failures. Only the highest levels
will be able to pause data taking or decide when to stop a run.

6.4.1 Verification, Diagnostic and Automatic Recovery

Regular verification of the system status and its correct functioning will be a vital operation to
help avoiding failures to occur. A customizesable diagnostic and verification framework will al-
low to verify the correct status of the TDAQ system before start-up or between runs, automati-
cally or on request. It will make use of a suite of custom test programs which are specific for
each component type in order to diagnose eventual faults. It will be integrated into the hierar-
chical structure of the TDAQ supervision framework and can (optionally) take automatic action
for the recovery of a fault. It provides multi-level decentralized error handling and allows ac-
tions on failures on a low level. A knowledge base containing the appropriate actions to be tak-
en will be established at system installation time. Experience from integration tests and in test
beam operation will initially provide the basis. Each supervision node may contain a rules cus-
tomized to its specific role in the system. Table 6-1 gives an example on the hierarchical distribu-
tion of supervision levels.

6 Fault Tolerance and Error Handling 43

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Table 6-1 Error handling levels

Experiment é «—
level

Subsystem
level

——
SUOS193P
\
o

errors

Local Controller % @ @

level

Remark: the diagram will have to be adjusted in style etc. to map the definitions made in earlier chapters.

6.5 Typical Use Cases

This paragraph will describe how a component would react to some typical faults both in a global ap-
proach and discussing any system specifics. The current colection is incomplete. Contributions should be
provided by the systems. It is the intension to include details which would go bejond the scope (or space)
in the TDR in a supporting document.

ROL (flow control, missing ROD fragments, failure); DF applications (failure of one or more); control
and/or event data messages (packet loss, flow control, QOS (peer to peer or switches). Results from mod-
elling may be used to justify.

A short list of possible reactions on different levels (from inside an application to system wide)
and their impact on data taking follows:

= Symptom: Read-out link not working properly.
« Action: Reset of local hardware.

= Impact: Some parts of the event might be missing. If successful only an informa-
tional message would be send to the higher level. If not successful a error message
would be issued.

= Symptom: Timeout for requests to a ROS inside a LVL2 node.

= Action: Retry a configurable number of times.

44 6 Fault Tolerance and Error Handling

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

= Impact: Parts of an event might be missing. If not successful, the LVL2 trigger might
not be able to run its intended algorithms and the event has to be force-accepted. If
the error persists, the data taking efficiency might drop because the event building
will be mostly busy with forced-accept events.

« Symptom: Dataflow component reports that ROS times out repeatedly.

= Action: Pause the run, remotely reset the ROS component and if successful resume
the run. If not successful, inform all concerned components that this ROS is no
longer available and inform higher level (who might decide to stop the run and
take other measures like calling an expert).

< Impact: Data missing in every event.
= Symptom: LVL2 supervisor event request to LVVL2 node times out.

= Action: retry a configuration number of times. Then take node out of scheduler and
report to higher level.

< Impact: Available LVL2 rate is reduced
= Symptom: LVL2 Supervisor reports that LVL2 node repeatedly timed out.

< Action: Remotely reset the offending node. If successful, the node should come
back into the run. If not successful the

< Impact: LVL2 rate is reduced while node is reset.

« Symptom: None of the nodes in a Eventfilter subfarm can be reached via the network (e.g.
in case of a switch failure).

« Action: Take all affected nodes out of any scheduling decisions (e.g. in the DFM) to
prevent further timeouts. Inform higher level about the situation.

< Impact: Data taking rate is reduced.
As can be seen, the same error condition (e.g. timeouts for requests) leads to quite different ac-
tions depending on the type of component. Each ROS is unique in that its failure leads to some

non-recoverable data loss. A LVL2 node on the other side can be easily replaced with a different
node of the same kind.

6 Fault Tolerance and Error Handling 45

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

6.5.1 Reliability and fault tolerance in the Data Flow

This section was moved from Chapter 8, ""Data-flow" and inserted as is here. It is most likely that this
will be reworked into Section 6.5, "Typical Use Cases".

This section presents the major error use cases of the DataFlow. As a guideline to identifying the error use
cases, major should be interpreted as referring to those that have directly influenced the design of the Da-
taFlow. Each use-case is described as having transient, accumulative or persistent effect on the behaviour
of the DataFlow. The handling of each use-case is presented based on results of real life tests. The exact
layout of this chapter is subject to the identification of the major error use cases.

Each subsection groups related error use cases.

6.5.1.1 Detector read-out

Possible error use cases here are: ROL failure; assertion of one or more of the error bits in the S_LINK end
of frame control word, i.e. ROD fragment corruption; assertion of S-LINK LDOWN; missing or out of
sequence ROD fragments.

6.5.1.2 Level 1to Rol builder

This sub section should be a summary of what is detailed in [8-27].

6.5.1.3 Control and event data messages

How the system handles the loss of each type of control message and event fragments separately.

6.5.1.4 Applications

How the system handles the failure of one or more of the applications.

6.5.2 Reliability and fault tolerance in the XXX system

describe important reliability and fault tolerant aspects in the respective system

6.6 References

Working Group Report of the Atlas TDAQ Error Handling and Fault Tolerance Working Group

46 6 Fault Tolerance and Error Handling

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

7 Monitoring

7.1 Overview

A fast and efficient monitoring is essential during the data taking periods. Any malfunctioning
part of the experiment must be identified and signalled as soon as possible so that it can be
cured. The sources of monitoring information may be events, fragments of events or any other
kind of information (histograms, counters, status flags, etc...). They may come from the hard-
ware, processors or network elements, either directly or via the DCS. Some malfunctions can be
detected by the sole observation of a single piece of information and could be performed at the
level of the source of the information. An infrastructure has to be provided to process the moni-
toring information and bring the result to the end user (normally the shift crew).

The monitoring can be done at different places of the Data Flow in the DAQ system: ROD Crate,
ROS, and SFI. Moreover, additional monitoring can be provided by the LVL2 trigger and by the
Event Filter due to the fact that these programs will decode data, compute tracks and clusters,
count relevant quantities for simple event statistics or to monitor the functioning of the various
trigger levels and their selection power. It is possible to foresee that a part of the Event Filter is
dedicated to monitoring activities where events tagged at read-out level or at previous stages of
the selection are routed by the Data Collection (Event Builder) for special treatment.

The ideas which are expressed in the present text reflect the very preliminary stage of the work
of the ad hoc working group on Monitoring. Many of them are likely to evolve until the final
edition of the TDR, when discussions with all concerned communities (TDAQ, detectors) bring
new input.

7.2 Monitoring sources

which ones of the ATLAS systems and sub-systems need to be monitored during data taking

7.2.1 DAQ monitoring

7.2.1.1 Front-end and ROD monitoring

sub-detector front end electronics specific monitoring
= data integrity monitoring
« operational monitoring (throughput and similar, scalers histograms)

< hardware

7.2.1.2 Data Collection monitoring

DAQ specific monitoring

7 Monitoring 47

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

= data integrity monitoring
= operational monitoring (throughput and similar, scalers histograms)

= hardware

7.2.2 Trigger monitoring

7.2.2.1 Trigger decision

simulate the decision of the trigger stages to confirm the quality of the decision

7.2.2.1.1 LVL1 decision

sample of rejected events passed on a pre-scaled basis to dedicated processing tasks (possibly in
a dedicated partition of the Event Filter)

7.2.2.1.2 LVL2 decision

same as LVL1

7.2.2.1.3 EF decision

detailed information appended to the event, for a sub-set of accepted and rejected events for of-
fline analysis.

7.2.2.1.4 Classification monitoring

In terms of monitoring, classification is a very important output of both LVL2 and EF process-
ing. It consists of a 128-bit bitmap which records which signatures in the trigger menu were
passed. Histograms can be filled locally on the processors where the selection is performed.
With an accept rate of 1 kHz for LVL2 and 200 Hz for EF, and assuming a sampling rate of 0.1
Hz, a 1 byte depth is sufficient for the histograms. For both LVL2 and EF farms, the rate for the
transfer of the histograms is therefore 1.2 kbyte/s.

7.2.2.2 Physics monitoring

The most simple approach to monitor the quality of the physics which is sent to permanent stor-
age will consist in measuring the rates for some physics channel. It may be performed easily in
the EF. A part of the results of these monitoring operations could be appended to the event
bytestream for offline analysis. Others could be sent to the operator via the standard Online
Software media for an online analysis.

Histograms of the rates for every item of the trigger menu as a function of time should be re-
corded, with the relevant variables with which they must be correlated (e.g. the instantaneous
luminosity). Such histograms can give very quickly an evidence for malfunctioning, although
their interpretation may be quite tricky.

48 7 Monitoring

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Well-known physics channels could be monitored so that one could permanently compare the
observed rates with the expected ones. The list of such channels should be established in collab-
oration with the physics groups.

Information coming from the execution of reconstruction algorithms may be of interest. One
could monitor e.g. the number of tracks found in a given detector on a per event basis. There
again, a comparison with reference histograms may be of great help to detect malfunctioning.
Input is required from offline reconstruction groups.

7.2.2.3 Operational monitoring

Everything related to the “system” aspects, e.g. transportation of the events or event fragments,
usage of computing resources, etc...

7.2.2.3.1 LVL1 operational monitoring

The integrity and correct operation of the LVL1 trigger will be monitored at both the hardware
level by processes running in trigger crate CPUs and also by monitoring tasks in the Event Fil-
ter.

The LVL1 trigger is the only place where every bunch crossing is processed and where a crude
picture of the real beam conditions can be found. For example, the calorimeter trigger fills histo-
grams, in hardware, of the "level 0" rates and spectra of every trigger tower and can quickly
identify, and if necessary suppress, hot channels. Hardware monitoring is also used to check the
integrity of links between the successive steps in the trigger processor pipeline.

At the Event Filter, monitoring tasks will check for errors in the trigger processors at a lower
rate than hardware monitoring, but with greater diagnostic power. Event Filter tasks will also
produce various histograms of trigger rates, their correlation and history.

7.2.2.3.2 LVL2 operational monitoring

The LVL2 selection software runs as part of the Data Collection (DC) in the L2PU
[L2MonitMRS]. It will therefore use the DC infrastructure and hence the monitoring tools fore-
seen for this system. The following aspects, relevant of DC, will be monitored :

=trigger, data and error rates
«CPU activity
= queue occupancies (load balancing)

Monitoring of the quality of the data by LVL2 processors is not envisaged. Indeed, the available
time budget is limited because of the necessity to release data from the ROB. Monitoring a frac-
tion of the events in the L2PU is not desirable since this would introduce large variations in
LVL2 latencies as well as possible points of weakness in the LVL2 system. The necessary moni-
toring of the LVL2 quality shall therefore be delegated to the downstream monitoring fac
i.e. the EF (or online monitoring farm) and the offline analysis. One should however discuss
very carefully the opportunity to fill in L2PU some histograms, possibly read at the end of the
run, so that a high statistics information is given, which could not be reasonably be obtained by

7 Monitoring 49

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

using forced accepted events on a pre-sampled basis. The evaluation of the extra CPU load for
such operations should be made.

7.2.2.3.3 EF operational monitoring

The monitoring of the data flow in the Event Filter will be primarily done directly at the level of
the EFD process. Specific EFD tasks, part of the main data flow, will be in charge of producing
relevant statistics in terms of throughput at the different levels of the data flow. They have no
connection with other processes external to EFD.. The detailed list of information of interest for
the end user has not yet be finalised and will continue to evolve all along the lifetime of the ex-
periment.

Among the most obvious parameters which are going to be monitored, one might quote :
=the number of events entering the Farm

=the number of events entering each sub-farm

«the number of events entering each processing host

«the number of events entering each processing task

=the number of events selected by each processing task, as a function of the physics channels present in
the trigger menu

=the same statistics as above at the level of the processing host, the sub-farm and the Farm

Other statistics may be of interest such as the size of the events, as a function of different param-
eters (the time, the luminosity of the beam, the physics channel). As stated above, the identifica-
tion of these statistics will be formulated more precisely at a later stage of the development of
the experiment.

The results of the data flow monitoring will be sent to the operator via standard Online SW me-
dia (e.g. IS or Histogram Service in the present implementation).

7.2.2.3.4 PESA SW operational monitoring

Very preliminary ideas on monitoring in PESA SW have been presented during the HLT inte-
gration Workshop. A first list of parameters which could be monitored for debugging purpose
and comparison with modelling results has been given:

=length of time spent in each algorithm

=frequency at which each algorithmis called

«number of stepsin the step sequencer before rejection

«info and debug messages issued by the PESA SW

Some of these points could be also monitored all along the duration of normal data taking.

Hooks necessary for these profiling measurements should be implemented directly at the level
of the base class of the GAUDI algorithm. Profiling tools such as NetLogger for coarse meas-

50 7 Monitoring

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

urements and TAU have already been studied in the context of LVL2 and their use at a larger
scale will be considered in PESA SW.

An Online Event Display, with the whole functionality of the offline version but working with
events sampled after the Event Builder, including accepted as well as rejected events, is consid-
ered as a very powerful monitoring tool.

7.2.3 Detector monitoring

The detector monitoring can be done at different places of the Data Flow in the DAQ system:
ROD Crate, ROS, and SFI. Moreover, additional monitoring can be provided by the LVL2 trig-
ger and by the Event Filter due to the fact that these programs will decode data, compute tracks
and clusters, count relevant quantities for simple event statistics or to monitor the functioning
of the various trigger levels and their selection power.

For small test systems a monitoring at the ROD Crate level would be used. This has been
achieved already during the recent test beams using the current version of the DAQ-1 software,
writing an event sampler at the ROD crate. The Online Software Sampler is then used to make
these monitored events available to Monitoring tasks implemented by the users.

Monitoring at the ROD crate would help in the experiment to check the functioning of the read-
out chain or to debug specific problems at this stage of the data flow. Some sub-detectors wi
make use of monitoring at this stage to monitor the possible additional tasks performed at this
level as the fitting procedure to find the weights to be applied to the ADC samples for the opti-
mal filtering procedure (e.g. LAr and Tilecal).

The monitoring at the ROS level will be also required in experiment for several uses. It will be
required to monitor at the ROS level the events that are rejected by the LVVL2 to monitor the cor-
rect functioning of the selection system. Moreover the monitoring at the ROS level will be very
useful to get useful data of a given sub-detector. In effect, according to the present detector rea-
dout organisations, a ROS may represent a significant part of a sub-detector and therefore mon-
itoring at the ROS level may give very useful feedback on a high statistical basis.

It is worthwhile to stress the fact that monitoring at the level of SFI is different from that at the
level of EF, the first one being much more general and therefore very useful, the other one being
CPU consuming and obliging all detectors to have an EF system which is not presently the case.
To build meaningful Processing Tasks at the EF level is not a triviality and in these CPU inten-
sive calculations one cannot include monitoring at zero cost.

The monitoring at the level of the SFI will be needed in experiment. This is the first place where
the complete assembled event is in the dataflow chain. An high statistic monitoring at this stage
can help in monitoring the functioning of the detector and to establish the first correlation be-
tween sub-detectors looking at simple quantities and without expensive calculations that can be
instead performed at the EF level. At the SFI level one could also think of implementing an
Event Display that is an heavy task for the EF tasks already busy for the last level decision.
Moreover monitoring events at the SFI level will help in understanding also the rejection of the
Event Filter.

It is worthwhile to stress the fact that monitoring at the level of SFI is different from that at the
level of EF, the first one being much more general and therefore very useful, the other one being
CPU consuming.

7 Monitoring 51

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

The monitoring at the level of the EF is very promising, but it requires a lot of effort on the soft-
ware side for the detectors experts for developing detector calibration and reconstruction tasks
that have to be fast enough to cope with the EF latency. The same programs used for offline
tasks may turn out to slow down the system put a back pressure on the Data Flow. This aspect
has to be further developed with the latest measurements.

More input expected from Monitoring Workshop

7.3 Monitoring destinations and means

Where and how (which tools) to perform monitoring operations

7.3.1 Online Software services

The Online Software provides a number of services which can be used as monitoring mecha-
nism which is independent of the main data flow stream. The main responsibility of these serv-
ices is to transport the monitoring data requests from the monitoring destinations to the
monitoring sources and to transport the monitoring data back from the sources to the destina-
tions.

There are four services provided for a different types of the monitoring information:

<Event Monitoring Service - is responsible for transportation of physical events or event fragments
sampled from well-defined points in the data flow chain to the software applications which can analyse
them in order to monitor the state of the data acquisition and the quality of physics data of the experiment.

«|nformation Service - isresponsible for exchange of user-defined information between TDAQ applica
tions and aimed to be used for the operational monitoring. It can be used to monitor the status and various
statistics data of the TDAQ sub-systems and their hardware software elements;

=Histogramming Service - is a specidisation of the Information Service with the aim of transporting
histograms. It accept several commonly used histogram formats (lik3 ROOT histograms for example) as
the type of information which can be send from the monitoring sources to the destinations;

=Error Reporting Service - provides transportation of the error messages from the software applications
which detect these errors to the applications which are responsible for their monitoring and handling.

Each service offers the most appropriate and efficient functionality for a given monitoring data
type and provides specific interfaces for both monitoring sources and destinations.

7.3.2 Monitoring in the Event Filter

From the beginning of the design of the EF, it has been foreseen to perform some monitoring ac-
tivities in it, in addition to the ones related directly to the operation. EF is indeed the first place
in the data taking chain where the full information about the events is available. Decisions from
the previous levels of the trigger system can be checked from both accepted and rejected (on a
pre-scaled basis) events. Information coming from the reconstruction phase, which generally re-
quires a large amount of CPU power, can be rather easily re-used, leading to large savings in

52 7 Monitoring

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

terms of computing resources. Finally, the fact that EF is part of the data taking chain ensures
that pertinent information will be made available to the shift crew in the best time delays.

Monitoring in the Event Filter, or more generally monitoring after the Event Builder, can be per-
formed in different places :

«directly in the filtering tasks (which rai ses the problem of the robustness of the monitoring code),

«in dedicated monitoring tasks running in the context of the Event Filter (then, one should think of pass-
ing the information gathered in the filtering task to take profit of the already used CPU)

«or in adedicated, independent sub-farm. In that case, that is the Data Collection DFM which takes care
of directing potentially interesting events (tagged at read-out, LVL1 or LVL2 levels).

Those different possibilities are not mutually exclusive.

7.4 Archiving monitoring data
Data which is produced by monitoring activities should be archived by some bookkeeping serv-
ice so that it can be cross-checked offline with more detailed analysis. One should also store (in

a dedicated channel ?) events whose acceptation has been forced at any level of the selection
chain. These events are necessary to evaluate precisely the acceptance of the trigger.

7.5 Monitoring requirements on networks

Monitoring matrix

7 Monitoring 53

ATLAS

High-Level Triggers, DAQ and DCS

Technical Design Report
30 June 2003

54

7 Monitoring

Part 2

System Components

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8 Data-flow

8.1 (Possible introduction)

8.2 Detector read-out and event fragment buffering

8.2.1 Read-out link

Each sub-detector reads data from the detector over Front-End links and uses a ROD to multi-
plex the data. Each of the sub-detectors has different requirements (and different designers;-)
consequently the implementation of the ROD varies between sub-detectors. The guidelines for
designing the ROD are set out in the Trigger & DAQ Interfaces with Front-End Systems: Re-
quirement Document [8-1]. The purpose of the ROL is to connect the sub-detectors to the TDAQ
system and it is responsible for transmitting error-free data from the output of the ROD to the
input of the ROS, the first element in the TDAQ chain.

The ROL requirements have been stable since the High-level Triggers, DAQ and DCS Technical
Proposal TP [8-2]:

32 bit data at 40.08Mhz, (~160 MByte/s)

A control bit to identify the start and end of an event

Xon/Xoff flow control

Error detection, error rate < 10-12

= A maximum length of 300m for the fibre version, 25m for the electrical version.

To ensure homogeny, the output of the ROD is defined by the S-LINK specification [8-3]. In ad-
dition, The raw event format [8-4] defines the order and content of the information transmitted
from the ROD. At the other end of the ROL, the ROS inputs are identical for all sub-detectors
and also conform to the S-LINK standard.

The S-LINK specification has been stable since 1996. It is used in COMPASS and in other LHC
experiments, e.g. CMS. S-LINK is an interface definition; it only defines protocols and recom-
mends connector pin-out. As shown in Figure 8-1, the ROD end of the ROL is called the Link
Source Card (LSC) and the ROS end the Link Destination Card (LDC). They are connected by
optical fibres or copper cables. Event data flows from the LSC to the LDC on the forward chan-
nel. Flow control information, i.e. the ROS can stop the ROD sending data if it's input buffers
are almost full, flows from the LDC to the LSC on the return channel.

The DIG - ROD Working Group have also recommended that the LSC be placed on a mezzanine
card to facilitate support and upgradeability [8-5]. The form factor of these mezzanine cards is
based on the CMC [8-6] standard.

The LSC plugs onto the S-LINK connector on the ROD (or its associated rear transition card).
For the forward channel, a Field-programmable gate array (FPGA) handles the protocol and de-
livers words to a serial/deserialiser (SERDES) chip which performs parallel-to-serial data con-

8 Data-flow 57

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Figure 8-1 The relationship between the S-LINK and the ROL.

version and encoding. The output of the SERDES drives an optical transceiver that in turn feeds
the optical fibre. The operation of the receiving card, the LDC, is a mirror image of the LSC. In
fact the current LSC and LDC are physically the same card with different programs in the FP-
GA.

Various prototype implementations of the ROL have been built to prove the concept and meas-
ure the performance. The previous version of the ROL, the ODIN, used a physical layer that
was based on the Hewlett Packard G-LINKs (HDMP-1032/1034). They have also been used suc-
cessfully in ATLAS test-beams and eighty of these ROLs are being used in the COMPASS exper-
iment. However, the maximum bandwidth is limited by the G-LINK at 128 MByte/s. Following
the second ROD workshop, the requirements of the ROL were increased to 160MByte/s and a
second version of this link was designed which used two G-LINKSs chips per channel. Unfortu-
nately, this raised the cost as two pairs of fibres and associated connectors were required.

Another recommendation of the ROD Working Group was to build a ROL that would use only
one pair of fibres. This has been achieved by using 2.5 Gbit/s components in the current design,
the High-speed Optical Link for ATLAS (HOLA) [8-7]. In this implementation a small FPGA,
the EP20K30E APEX 20K, handles the S-LINK protocol. The SERDES chip is a Texas Instru-
ments TLK2501 running at 2.5 Gbit/s for both for the forward and for the return channel (one
per card). For the optical transceiver, the Small Form Factor Pluggable (SFP) Multimode 850 nm
2.5 Gbit/s with LC Connectors is recommended, e.g. the Infineon V23818-N305-B57. The use of
pluggable components allows the optical components to be changed in case of failure.

Test equipment has been developed for the ROD/ROL/ROS. This includes an emulator that
can be placed on the ROD to check that the ROD conforms to the S-LINK specification. Similar-
ly, an emulator exists that can be placed on a ROS to emulate a ROL connection. The emulators
allow ROD, ROL and ROS designs to be tested at full bandwidth and errors to be introduced in
a controlled manner. The HOLA was produced and tested in 2002 and satisfies all requirements
of the ROL.

In addition, for the purposes of exploitation in laboratory test set-ups and in test-beams, i.e. fur-
ther testing, cards exist which allow the ROL to be interfaced to the PCI Bus in a PC. Perform-
ance measurements of this interface [8-8] have shown that data can be transferred into a PC at

58 8 Data-flow

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

160 MByte/s using a single ROL input. Modifications to the firmware have allowed the emula-
tion of an interface with four ROL inputs. Measurements using this emulator have demonstrat-
ed a bandwidth of 450 MByte/s into a PC. The next version of the interface, the FILAR, wi
have four ROLs on-board and should be ready for the April 2003 test-beam.

The purchase of the cards, in small quantities, is handled by the CERN stores. For quantities re-
quired for ATLAS a tendering process will be initiated in 2003 thus ensuring the availability of
larger quantities during 2004. The production schedule will be adapted to the requirements of
the sub-detectors who have been asked by the DIG to provide estimates of quantities for the
years up to the start of the LHC. Maintenance and short-term loans of equipment will probably
be handled by EP/ESS.

8.2.2 Read-out subsystem

8.2.2.1 High Level Design

The ROS has three major components: the Robln, the IOManager and the LocalController.
Figure 8-2 shows the relationship between the three ROS components and any other relevant
TDAQ component. A complete high level design of the ROS can be found in [8-10], only a
summary is presented here.

Figure 8-2 Main ROS components and their relationship with the other TDAQ components.

The RobIn component provides the temporary buffering of the individual data fragments pro-
duced by the RODs. All incoming ROD event fragments are buffered for the duration of the
LVL2 trigger decision time. It thus needs to receive and buffer incoming ROD event fragments
at the full LVL1 trigger rate. The ROD event fragments are buffered The date In addition, also
sends on request the accepted ROD event fragments.

Due to these very demanding requirements the baseline RobIn is designed and implemented as
a custom hardware module. Section 8.2.2.2 describes the high level design of the Robln compo-
nent and the results of measurements obtained with a prototype Roblin.

8 Data-flow 59

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

The main function of the IOManager is the servicing of requests for data by the High Level Trig-
gers. According to the criteria specified in the data request, the IOManager collects ROB frag-
ments from one or more Roblns and builds a ROS Fragment. This fragment is then sent to a
destination specified in the original request. It also receives from the High Level Triggers the re-
quest to release buffer space occupied by ROD event fragments. These event fragments have ei-
ther been rejected by the LVL2 trigger or successfully built by the Event Building. So as to
maximise the overall performance of the ROS, the design of the IOManager allows a number of
data requests and releases to be handled concurrently that is to say, it overlaps 170 operations
with the processing of requests.

In the baseline TDAQ implementation the IOManager units are implemented as multithreaded
software processes.

The LocalController also provides a single interface point between the ROS and the Online soft-
ware (configuration database, run control, message reporting, monitoring and process control).
In particular the LocalController is responsible for retrieving the relevant information from the
configuration database and sending it to the IOManager component. The IOManager also pro-
vides for the configuration, control and operational monitoring of its associated Roblns.

As the I0Manager and the Robln components, the LocalController are organized in specific
units, each of which is connected to one or more IOManager units. In the TDAQ baseline imple-
mentation the LocalController is implemented as a multithreaded software processes.

In one of the possible future ROS deployment scenarios there would not be any IOManager
component and all the RobIn units would be directly visible outside of the ROS system. In such
a scenario all the control, monitoring, error handling functionalities provided by the IOManager
will have to be provided by the other components or sub-systems, i.e. LocalController and Da-
taCollection. No data multiplexing will be provided at the level of the ROS, and the different
systems will always have to send data requests to the individual Robln units and handle the in-
dividual ROB Fragments coming back from all of them.

8.2.2.2 Design of the ROBIN

The Robln is located at the boundary between the detectors and the ROS. It receives ROD event
fragments from a number of ROLs. Its basic functionality can be described by the following four
tasks:

Receive ROD event fragments from the ROL

Buffer ROD event fragments

Send ROD event fragments, on request, to the High Level Triggers

Release ROD event fragments, on request, from the buffer.
Figure 8-3 shows the context of the Robln.

The baseline RobIn takes into account the experience and results of studies from previous pro-
totyping studies [8-12], [8-13] and the requirements on it are documented in the ROS-URD [8-9].
The final design of the RobIn will based on the final prototype whose complete design is docu-

60 8 Data-flow

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Figure 8-3 Context of the Roblin.

mented in a set of documents [8-14], [8-15] and [8-16]. Here only a summary description is giv-
en.

Andreas: | intend to omit all the details of the function description which can be taken from HLDD and
DLDD.

Editor: A reduced description needs to be given here.

Andreas: Should we elaborate on the issues of changing the ROL to GE, multiplexing etc?
Editor: What we finally put here should reflect the baseline choice, not an either or.

Referring to Figure 8-4, the primary functions of the RobIn (receive, buffer, send and release) are
mapped onto a small number of specialised building blocks: ROL-IF - CORE - MEM - TDAQ-IF.
It supports two ROLs, the data from which are buffered in separate buffers. All functionality re-
lated to the receiving of ROD fragments from the ROLs are realised in an FPGA, the CPU han-
dles the issues related to management and monitoring.

The TDAQ-interface block implements two interfaces, a PCl bus and a network interface, allow-
ing various DataFlow architecture options to be studied. The design of the final Robln can be re-
alised by removing (and not by adding) functionality, i.e. the PCI bus or network interface.

The Software Interface [8-16] to the prototype Robln is generic enough to allow the Roblin to be
studied in all DataFlow architectural options. The same basic services and messages are used in
all cases, and functionality particularly required for e.g. the network is encapsulated in appro-
priate modules. The software interface comprises mainly the definition of a set of services pro-
vided by the Robln and the messages to request these services and to transfer the responses.

8 Data-flow 61

ATLAS

High-Level Triggers, DAQ and DCS

Technical Design Report
30 June 2003

Figure 8-4 Basic Functional Diagram.

62

8 Data-flow

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

The ROS LocalController, via the IOManager, performs the configuration and control of the
Robln via the TDAQ-interface block.

Andreas: Should we add more information about the production status?

Editor: It will be out of date at the time of print.

8.2.2.3 Implementation and performance

The baseline deployment of the ROS is shown in Figure 8-5.

Figure 8-5 Baseline deployment of the ROS.

Benedetto: for now I put the bus based ROS but this may change

It is deployed on two nodes: a ROS PC and a RobIn module. The former is a desktop PC run-
ning the Linux operating system and has at least one Ethernet connection for the purpose of
communication with the Online system. In addition, it has at least four 64 bit / 33 MHz and 3.3
V PCI slots. These slots are used to host the Robln modules. Each Robln node has two SLINK
input connections. The IOManager via the DC Message Passing interface receives data requests
and release messages, and returns ROS event fragments to the High Level Trigger components.
These communications occur via Ethernet.

Figure 8-6 shows an alternative way of deploying the same ROS components. In this case the
RoblIn devices are now implemented on dedicated boards, e.g. VMEbus 9U, and the connection
with the ROS PCs is made through an Ethernet switch. The figure also shows that in this scenar-
io the LVL2 trigger requests data fragments directly from the Robln modules, without passing
through the IOManager process.

Extensive measurement have been made on the performances of the ROS for the deployment
scenarios previously described, bus-based and switch-based, here only the main results are pre-
sented, the complete set of results can be found in [8-20].

8 Data-flow 63

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Figure 8-6 Alternative ROS deployment scenario.

Figure 8-7 shows the setup for the bus-based testbed. In this testbed an IOManager and a Local-
Controller process were deployed on a standard 2 GHz Xeon PC with a single processor and a
66 MHz / 64Bytes PCI bus, running RedHat Linux 7.3.

As the final prototype Roblns were unavailable at the time of these measurements, 170 with a
RoblIn was emulated using a number of RACE boards [8-19] which have the same physical PCI
bus interface as the final prototype Robln, and thus provide a very accurate emulation of the fi-
nal devices. The RACE boards were not connected to any external data source and were pro-
grammed to generate ROB Fragments on demand.

Figure 8-7 Setup of the testbed for studying the bus-based ROS system.

The testbed has been run both in a standalone configuration, where the IOManager was gener-
ating triggers internally and the produced ROS Fragments where sent nowhere, and in a config-

64 8 Data-flow

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

uration where the IOManager was receiving real data request messages from the network and
sending back the ROS Fragments to the requester process.

Figures 8-8 and Figures 8-9 show the maximum LVL1 rate that an IOManager was able to sus-
tain for different fractions of LVL2 and Event Building requests and for different number of
RACE boards connected to it. As we had only 6 RACE boards available, we developed a soft-
ware simulation of the Robln to allow the test of the IOManager performances with larger num-
bers of connected Robln modules

The “software emulation” probably needs to be elaborated.

Figure 8-8 Maximum sustainable LVL1 rate for different fractions of LVL2 and Event Building requests, for a
standalone bus-based ROS connected to a different number of Robln modules.

Figure 8-9 Maximum sustainable LVL1 rate for different fractions of LVL2 and Event Building requests, for a
standalone bus-based ROS with real I/O to other DataFlow components.

8 Data-flow 65

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Figures 8-10 shows how the simulation reproduces the measured results for up to 6 RobIn mod-
ules and the results that one obtains for a larger number of Roblns.

Figure 8-10 Maximum sustainable LVL1 rate for different fractions of LVL2 and Event Building requests. for a
standalone bus-based ROS with simulated PCI RobIn input.

The system is thus shown to fulfil the requirements for the final ATLAS for up to XXXX PCI
RoblIn modules connected to a same IOManager.

Figures 8-11 shows the setup for the switched-based testbed. The IOManager and a LocalCon-
troller process were deployed on a standard PC and the Roblns were emulated with a number
of FPGA emulators [8-21] that were programmed to receive data requests over the network
with the same message passing interface as the final RobIn prototype and to generate ROB
Fragments on demand. Similarly to the tests performed on the bus-based ROS, this testbed has
been operated both in a standalone configuration, where the IOManager was generating trig-
gers internally and the produced ROS Fragments where sent nowhere, and in a configuration
where the IOManager was receiving real data request messages from the network and sending
back the ROS Fragments to the requester process.

Figure 8-12 and Figure 8-13 show the maximum LVL1 rate that the system was able to sustain
for different fractions of LVL2 and Event Building requests and different number of connected
Robln sources. Also in this configuration the system is shown to fulfil the requirements for the
final ATLAS, see SOME SECTION IN PART 1..

8.2.2.4 pROS

Main description here. Short addition in Chapter 9, "High-level trigger".

8.2.3 ROD crate data acquisition
The ROD is a sub-detector specific front-end element. It is located, in the event data flow, after

the first level of on-line event selection, between the Front-end Electronics (FE) and the ROS.
The ROD receives data from one or more Front-end Links (FELs) and sends data over the ROL

66 8 Data-flow

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Figure 8-11 Setup of the testbed for studying the switched-based ROS system.

Figure 8-12 Maximum sustainable L1 rate for different fractions of L2 and EB requests, for a standalone net-
work-based ROS connected to a different number of RobIn modules.

to the ROB. The ROD System covers all RODs and other functional elements at the same hierar-
chical level in the event data flow between the FE and the ROS. Those elements are grouped in
crates. The crates contain ROD Crate Modules (RCMs) which can be: RODs, modules other than
RODs, e.g. for control of the FE, for processing event data upstream of the RODs or for driving a
TTC partition, as well as not fully functional ROD prototypes in laboratory setups or at test
beam, and one or more ROD Crate Processors (RCPs). Each ROD Crate is connected to one or
more ROD Crate Workstations (RCWs).

The sub-detectors need common DAQ functionality at the level of the ROD Crate for single or
multiple ROD Crates in laboratory setups, at assembly of detectors, at test beam, and at the ex-
periment during commissioning and production. ROD Crate DAQ [8-17] is part of the TDAQ
system. It comprises all software to operate one or more ROD Crates and runs inside the ROD

8 Data-flow 67

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Figure 8-13 Maximum sustainable L1 rate for different fractions of L2 and EB requests, for a network-based
ROS with real DC I/O.

Crate as well as on the RCWs. It provides the functionality for configuration and control, ROD
emulation, monitoring, calibration at the level of the ROD Crate, and event building across mul-
tiple ROD Crates.

8.2.3.1 High Level design

The ROD Crate configuration describes all necessary data required to fully configure all mod-
ules of the ROD Crate and the RCW(s). All ROD Crate configuration data are stored in one or
more databases with the configuration database of the Online Software being the driving one.
Several different ROD Crate configurations are stored in the database(s) concurrently. At initial-
isation of a run, one configuration is selected and loaded.

The ROD Crate control takes all necessary actions required to fully control all modules of the
ROD Crate and the RCW(s). It is based on the run control of the Online system and implement-
ed as a tree of run controllers, one per ROD Crate and others on the RCW(s) as necessary. The
ROD Crate controller (RCC) drives all RCMs of the ROD Crate into well-known states and in-
vestigates their status. It may require interaction with the TTC system and/or DCS.

The primary event data flow of the ROD Crate transports event data from the FE over the FEL,
the ROD and the ROL to the ROS. The secondary event data flow of the ROD Crate transports
sampled event data from the RODs over VMEbus, optional ROD Crate data collection, optional
ROD Crate event building, and ROL to the ROS, or optionally to data storage for recording.
ROD Crate DAQ provides collection of sampled event data from multiple RODs in the same
ROD Crate and building of sampled event data from multiple ROD Crates.

Some ROD prototypes are not fully functional RODs and some are non-ROD modules, in par-
ticular at test beam, have to be read out at the same hierarchical level in the event data flow as a
ROD. ROD emulation provides the missing functionality. ROD emulation may be based on the
primary or on the secondary event data flow. In both cases, an RCP is required.

68 8 Data-flow

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Monitoring is another basic function of the ROD Crate DAQ. Different types of monitoring have
to be distinguished depending on the different types of monitoring data they are collecting.
Event data monitoring provides event data coming from the secondary data flow. Scaler and
histogram monitoring provides scaler and histograms derived from event data. Operational
monitoring reads operational values not directly derived from event data.

ROD Crate calibration provides sub-detector calibration at the level of the ROD Crate. It reads
all event data from the secondary event data flow, processes them and calculates calibration da-
ta. The calibration data are written to data storage for recording or to the calibration database.

ROD Crate event building is achieved by event building sources, one for each ROD Crate which
participates in the event building, and one event building destination. An event building source
is an output of a ROD emulation, monitoring or calibration activity. It sends all event data of the
secondary event data flow over Local Area Network (LAN) to the event building destination.
The event building destination is the input of a dedicated ROD emulation, monitoring or cali-
bration activity and usually runs on the RCW.

The basic functions of ROD Crate DAQ can be combined to provide high-level functionality for
physics and calibration runs. They can also be used in different setups for physics data taking,
ROD emulation, event building from multiple ROD crates, and small laboratory setups.

The framework of ROD Crate DAQ is organized into four layers: hardware, operating system,
low-level services, and high-level tasks. A call for tender for the hardware of the RCP is under
way. It is assumed that PCs will be used for the hardware of the RCWs. Linux is the first choice
of operating system. LynxOS will be used for the RCPs in case real-time performance is re-
quired. The low-level services, like libraries and drivers, are organized into three different lay-
ers for hardware access, high-level task support and support for the Online Software.

A ROD Crate DAQ task is a high-level task for ROD Crate controller, ROD emulation, monitor-
ing, calibration or event building. ROD Crate DAQ tasks are provided as skeletons made of ge-
neric functions which may be extended by the sub-detector groups. Some standard functions
are provided, e.g. for event building, which probably do not require extension.

The generic functions of the ROD Crate dataflow task are: the “input function” which reads
data from FEL, RCM or LAN, the “processing function” which processes and selects data, the
“output function” which sends data over the ROL or LAN, or to data storage, the “control func-
tion” which communicates with the ROD Crate controller, and the “monitoring/histogram-
ming function” which communicates with the monitoring/histogramming of the Online
Software. The specific tasks for ROD emulation, monitoring, calibration or event building are
distinguished by the implementation of their individual functions

8.2.3.2 Implementation

ROD Crate DAQ re-uses existing software where possible. The Online Software is used as is,
with some adaptation to sub-detector specific needs, in particular, for configuration. The ROD
Crate controller is adapted from the controller developed for the ROS. The ROS software is also
used to provide skeletons for the different tasks of ROD emulation, monitoring, calibration and
event building.

The initial software development involves several real users and ROD Crates containing ROD
prototypes as well as fully functional RODs. The workplan [8-18] allows for a first distribution
of ROD Crate DAQ to be available by June 2003.

8 Data-flow 69

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8.3 Boundary and interface to the level 1 trigger

Because ATLAS depends on data collection guided by Rols the level 2 system needs informa-
tion from the level 1 trigger decision. This information includes both the triggers which passed
and the details of where, in eta and phi, the trigger primitives that caused the accept came from.
This requires information internal to the level 1 system to be passed on to the HLT. Collecting
this information and passing it on to the HLT is the responsibility of the RolB.

Figure 8-14 shows the RolB and its connections to the level 1 system. Since the level 1 accept rate
is fairly high as an input transaction rate for a single processor, the RolB is designed to spread
the level 1 events over a small farm of processors which are referred to as supervisor processors.
The supervisor processors receive a single S-link record containing the summary information
for each event from the RolB. Since the RolIB sends complete records to several supervisor proc-
essors no single processor has to deal with a full level 1 rate. The supervisors pass the level 1
data on to the level 2 processor that will make a decision on the event. The supervisors are re-
sponsible for a rudimentary form of load levelling. They are aware of the disposition of events
that they send to level 2 processors and need to make sure that events are dealt with in a timely
way. They also need to be assured that no single processor is overloaded with pending events.
The operation of the supervisors is described in the Section 9.2.3.

Figure 8-14 [reb001v000_IvI1lvI2.eps]

70 8 Data-flow

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8.3.1 Description
This sub section should be a summary of what is detailed in [8-27].

A block diagram showing the level 1 system and its interconnection with the RolB is shown in
Figure 8-15. Each link from the level 1 system is an independent S-link input that sends a com-
pact description of the event for that component. Each link is limited to sixty three 32 bit words
or less per event. The various pieces of an event (referred to as fragments) will all arrive at the
RolB within one millisecond of each other. The RolB will assemble the event data and send it to
a supervisor processor which will then initiate the level 2 processing by passing a record to a
level 2 processor which includes the pertinent level 1 Rol data.

Figure 8-15 [reb001v000_Ivilblock.eps]

8.3.2 Region of interest builder

There is overlap with Chapter 9, ""High-level trigger™ on this component and only one chapter should de-
scribe it in detail with the other just mentioning the specifics for that chapter.

The RolB is a VME based system which uses FPGAs to combine the level 1 fragments into a sin-
gle record. It is composed of two parts. A pair of cards buffer the level 1 input and direct frag-
ments to cards which assemble individual events. Twelve inputs are considered adequate. This
will include both the level 1 fragments and an independent TTC input to assure consistency be-
tween level 2 and the read-out system. The input cards will communicate over a dedicated
backplane connection to one or more “builder' cards that provide four outputs for assembled
events. Figure 8-16 shows the system organization. The system can service four supervisors
with a single “builder' card and can be expanded in units of four by adding “builder’ cards.

8.3.2.1 Detailed design

This sub section should expand on the High level design described in Section 5.5. It should be a summary
of what is detailed in [8-27].

8 Data-flow 71

ATLAS
High-Level Triggers, DAQ and DCS

Technical Design Report
30 June 2003

P.u
B

Bl supervisor 15

Figure 8-16 RolB System organisation.

72 8 Data-flow

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8.3.2.2 Performance
Based on results with (12 U) prototype, including results of integration studies with Level 1.

A prototype of the RolIB was fabricated and tested in 1999. This version was built using a pair of
12U VME cards, an input card capable of handling six S-link inputs and a pair of builder cards
able to output to a pair of processors. This system utilized 76 Altera 10K40 FPGA's and 8
10K50's. Figure 8-17 shows the pair of boards that were built. The system and early performance
measurements are documented in [8-22].

Figure 8-17 12U VME card prototype of the RolB.

This system was adequate to demonstrate a number of critical points. It showed that the idea of
combining records from several sources using an FPGA based device is feasible. It showed that
the communications overhead for processors would not result in unmanageable numbers of
processors just to handle the 100kHz event rate; four 300 MHz pentium two machines were ad-
equate to handle the 100kHz rate. Subsequent tests with several prototype pieces of the level 1
system (the muon-CTP interface and the calorimeter CPROD) made a start on debugging the
component interfaces and further demonstrated that external inputs could be handled at the ex-
pected rates [8-23].

The scale of a full system will need to be set in the future, but current indications from the early
prototype make it clear that the full system will involve the number of processors needed to sat-
isfy the HLT functions of the supervisors documented in the HLT description and testing sec-
tion plus a few processors (less than four) to cover the additional communications from the
RoIB.

8 Data-flow 73

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8.4 Control and flow of event data to high level triggers

8.4.1 Message passing

8.4.1.1 Control and event data messages

Introduce the types of messages, the flow of messages, message rates and the bandwidths required. Con-
cluding with the choice of link technology.

The flow of event data from the ROS, where data are buffered during the LVL2 and event build-
ing latencies, to the HLT is achieved by the exchange of control messages and subsequent event
data messages between components of the DataFlow system. This is described in detail in [8-24]
and here only its major features are summarized. Figure 8-18 shows a sequence diagram detail-
ing the base interactions between DataFlow components.

Figure 8-18 Sequence diagram showing the interactions between DataFlow components

8.4.1.1.1 L2SV

The LVL2 Supervisor receives LVL1 Results containing the Rol information from the Rol Build-
er. It assigns according to a load balancing algorithm a L2PU to analyse the event. It will then re-
ceive the LVL2 decision from the L2PU which it forwards to the DFM. In case no LVL2 decision
will be received within a pre-defined timeout (e.g. the L2PU crashed, or a message was lost), the
L2SV will treat the event as if accepted by the L2PU. There will be several L2SV deployed in the
final system.

A LVL1 Result message does not exceed 512 bytes [8-27], leading to a maximum bandwidth re-
quirement of O(50 MB/s) at 100 kHz LVL1 rate. This bandwidth can be handled easily with any
gigabit capable link technology, furthermore, it has to be divided by the number of L2SVs de-
ployed.

74 8 Data-flow

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

84112 22L2PU

A LVL2 Processing Units receives a LVL1 result containing Rol Information from the L2SV,
which it uses to seed its processing algorithms. It requests specific Rol data from selected ROSs
for analysis, more Rol data is requested repeatedly until the sequential processing results in its
final decision to either reject or accept the event.

This includes also the decision whether an accepted event should be prescaled, or a rejected
event should become forced-accept. The L2PU then sends the LVL2 decision (accept, reject,
prescaled, forced-accept) back to the L2SV and in case of an (forced-) accepted event it also
sends a detailed record to the pseudo-ROS. There will be many hundreds of L2PUs deployed in
the final system.

As any individual L2PU processes events at a rate not higher than O(100 Hz), the bandwidth re-
quirement for receiving the LVL1 results are O(1 kB/s). However, the data rate of the received
Rol data can be substantial and is estimated to reach maximum values as high as O(10-20 MB/

s).

8.4.1.1.3 ROS

The Read-out System holds event data fragments inside Read-out Buffers (ROBs) and makes
them available to HLT, following data requests. The ROBs are cleared on receipt of clear mes-
sages.

The maximum bandwidth out of an individual ROB is estimated to O(10 MB/s) and data frag-
ments are requested at up to xxx kHz [8-25]. Depending on how many ROBs are hold in a ROS
and of the access mode to the ROBs, the ROS needs to provide O(Y MB/s) at a rate of yyy kHz.

8.4.1.1.4 25pROS

The Pseudo-ROS receives the detailed result records of the L2PUs for accepted events and par-
ticipates to the event building process, such that the LVL2 detailed result appears within the full
event record. From the point of view of the SFI there is no difference between the pROS and a
normal ROS component. However, the pROS has no detector specific input at all and requires
no special hardware like e.g. a ROBIn.

Given a LVL2 accept rate of O(2 kHz) and an estimated size of the LVL2 detailed result record of
O(1 kByte), the bandwidth in and out of the pROS will be a O(2 MB/s). One pseudo-ROS wi
therefore be sufficient for the final system.

8.4.1.15 2.6 DFM

The Dataflow manager receives (grouped) LVL2 decisions from the L2SVs and assigns an SFl,
following a load balancing algorithm, for the event building of every accepted event. It multi-
casts the (grouped) clear messages to all ROSs (incl. pROS).

The bandwidth requirements for the exchange of control messages with the DFM are small, giv-
en the grouping factor of the LVL2 decisions is O(100) results at a LVL1 rate of 100 kHz to
O(1 kHz) for the reception of the LVL2 decision messages. The communication with the SFI
adds an additional two times O(2 kHz) message rate. The distribution of the clear messages

8 Data-flow 75

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

from the DFM to the ROSs will also be grouped. with an assumed grouping factor of O(300),
only O(300 Hz) of message rate will need to be added - given a multicast mechanism for the dis-
tribution of clear messages. The total message rate to be handled by the DFM is therefore
O(6 kHz); only small messages O(few 100 Bytes) need to be exchanged, leading to an aggregat-
ed bandwidth requirement of O(3 MB/s) to be handled by the DFM.

8.4.1.1.6 SFI

The SubFarm Input assembles event fragments from the ROSs (incl. pROS) and serves these to
EventFilter SubFarms. It is the event building component in the DataFlow system and has to
stand relatively high data and control rates, and conversely the bandwidth (for the data). The
event size for complete events is O(2 MB) and the event building rate O(2 kHz), resulting into
an aggregated bandwidth requirement of O(4 GB/s). This load needs to be distributed over
many SFIs. Assuming an event building rate of O(50 MB/s) handled by one SFI, O(80) SFls,
each building events at O(40 Hz), will need to be deployed in the final system. The message rate
to be handled by an SFI depends on the number of ROSs deployed, and is O(40 Hz) times two
times the number of ROSs. It will not be above O(64 kHz) in case of 1600 ROS deployed.

For the communication with the EventFilter SubFarms, only a few messages need to be ex-
changed per event. However, a bulk transfer of the full event record is needed.

None of the afore mentioned messages require rates and bandwidth which cannot be handled
by a wide range of link technologies. A commodity solution of widely available products on the
world market can be deployed. Here the choice is dictated by price, long term availability, sup-
port, inter-operability and suitability for ATLAS DataFlow. Ethernet in its varieties of 100 Mb/s
and 1000 Mb/s is the prime candidate and has been evaluated to proove its suitability for ex-
change of control and event data messages in the Atlas DataFlow.

8.4.1.2 Ethernet

This section should introduce the key features (i.e. VLANS, QoS, switches, flow control) supporting its
selection and how they will be used. Should also summarise, based on [8-29], the basic message passing
capabilities in terms of achieved rates, overheads and CPU loads.

8.4.1.3 Design of the message passing component

Presents the main features of the design (high Level enough?) based on [8-30].

8.4.1.4 Performance of the message passing

Presents, based on [8-29], the performance of the message passing component in terms of achieved rates,
overheads and CPU loads.

The message passing layer of the data flow software is responsible for the transfer of all control

and event data between different components. It provides a common technology-independent
API across all applications.

76 8 Data-flow

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

The message passing layer itself imposes no structure on the data which is exchanged. Rather,
this structure is defined by the message types in [see Section 8.4.1.1] which can be changed
without affecting the message passing per se.

The service it provides is the transfer of up to 64 kByte of data with only a best-effort guarantee.
No re-transmission or acknowledgement of data is done by this layer. This allows to implement
the API over a wide range of technologies without imposing un-necessary overhead where not
needed or duplicating existing functionality. The API supports the sending of both unicast and
multicast messages. The latter has to be emulated by the implementation if it is not available
(e.g. for TCP).

The message passing layer interface has been implemented over raw ethernet frames, UDP and
TCP. The latter two implementations are technology-independent per se, although systematic
measurements were only done for switched ethernet configurations (i.e. the routing aspects of
IP are not necessary for the ATLAS architecture). TCP provides additional reliability compared
to UDP and raw ethernet. However, applications and message flow have been designed in such
a way that the system will still work when running over an unreliable technology. The raw eth-
ernet implementation adds message re-assembly on the receiver side, similar to what IP pro-
vides. Otherwise the maximum message size would be restricted to a single ethernet frame
which was seen as too restrictive for the range of data sizes intended.

Internally all implementations support scatter/gather transmission and reception of data. This
allows to build a logical message out of a message header and additional user data that doesn’t
need to be copied inside the application.

The basic operations of allocating and de-allocating a buffer to send or receive are dominated by
the need to make the interface thread-safe. On a 1 GHz dual processor SMP machine they take
in the order of 0.6 ps each. Since they require main memory access on a real multiprocessor sys-
tem this does not scale with the CPU frequency but with the memory speed. On a 2.2 GHz ma-
chine the numbers are only slightly smaller.

The basic measurements can be compared to the direct socket measurements of [see
Section 8.4.1.2]. Note that the latter are done in a single-threaded environment without any dy-
namic memory allocation and always send and receive data from a fixed location and with a
fixed size that is known in advance. Raw ethernet measurements are only done with a maxi-
mum of 1460 bytes, since no re-assembly of larger packets has been implemented. They there-
fore provide an upper bound for the possible performance which we don’t expect to reach with
the additional functionality in the message passing layer.

Among the reasons for lower performance are:

= Support for scatter/gather operations requires the kernel to copy an additional user data
structure across kernel boundaries.

= The varying message length supported by the message passing API requires at least two
read system calls for TCP, and two read system calls for every raw ethernet packet [check
with David Botterrill, maybe just for first packet].

= For raw ethernet the re-assembly of frames into large messages.

= Thread-safety for the sender side: multiple threads can send at the same time as long as
their destinations differ. They are serialized when they both send to the same destination.

8 Data-flow 7

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Problems with scalability are only expected for the TCP implementation where a potentially
large number of open sockets has be handled. The default TCP code uses the select() system call
which is known not to scale. However, alternatives are available either in the form of POSIX
conforming real-time signal in combination with non-blocking sockets or in a non-standard
form by ongoing developments in the latest Linux kernel (epoll() interface[ref]). The UDP and
raw ethernet implementations use only a single socket for receiving data.

Repeating the measurements for request/response and streaming shows an overall overhead of
about 10 ps compared to the low-level tests. This translates into a time of about 22 ps to serve an
incoming message or a rate of 45.5 kHz for receiving. These numbers are for a dual 2.2 GHz ma-
chine and require proper settings of socket buffer space and interrupt coalescence for the driver.
E.g. with default settings for the interrupt coalescence this rate drops to 7 kHz. The difference
between the various implementations are negligible: they are about 22.9 ps for UDP and 21.09
us for raw ethernet.

Finally we can compare the numbers measured above with the observed rates of one of the ap-
plications in the data flow. The SFI application can do event building with raw ethernet frames
at an overall rate that corresponds to a 40 kHz of data packages (ca. 1400 bytes) input and 40
kHz of requests (<64 bytes) output rate [8-32] which is in overall alignment with the low-level
measurements.

8.4.2 Data collection

8.4.2.1 General overview
This section describes the common model to collecting data for level 2 processing and event building.

DataCollection is a subsystem of the Atlas TDAQ DataFlow system responsible for the move-
ment of event data from the ROS to the LVL2 Processing and to the EventFilter and also to
MassStorage. See.

It includes the movement of the LVL1 Rols to the LVL2 PU (via the LVL2 SuperVisor) and the
LVL2 result (decision and detailed result) to the EventFilter as well as the EventBuilding and
feeding the complete events to the EventFilter.

However, DataCollection is not responsible for initializing and formatting (or preprocessing) of
event fragments inside the ROS, neither is it responsible to do preprocessing nor to perform
trigger decisions in the LVL2 Processing Unit or in the EF SubFarm.

Figure 8-19 shows a context diagram of the two main components of DataCollection (LVL2 Da-
taCollection and EventBuilding) and its interfaces to other systems and subsystems of Atlas
TDAQ.

The following lists the applications to be provided by DataCollection:

L2SV LVL2 SuperVisor

L2PUA LVL2 Processing Unit Application (i.e. L2PU low layer functionality)
DFM DataFlow Manager

pROS Pseudo ROS

78 8 Data-flow

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Figure 8-19 DataCollection context diagram.

SFI SubFarm Input
SFO SubFarm Output
In order to deploy this variety of components, a common approach in design and implementa-

tion is envisaged. This approach lead to the definition of the common DataCollection frame-
work, implementing a suite of common services. These were found to be:

= OS Abstraction Layer

= Configuration Database
= Error Reporting

« System Monitoring

= Run Control

= Message Passing

All applications in the DataCollection software share the need for a common set of typical oper-
ations. This includes error logging, configuration, system monitoring, run control and message
passing. All these capabilities are provided by a set of packages which is usually referred to as
the DataCollection Application Framework. This design leads to a large code reuse in practice.
A typical application is built on top of a skeleton application and only has to provide the actual
additional functionality.

Services are built from packages following a modular approach. Many of these packages consist
of interfaces only, whose implementation is provided by other packages which can be changed
at configuration or run-time. Examples are the error reporting (switching between simple std-

8 Data-flow 79

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

out/stderr and MRS), the configuration database (switching between OKS files and remote da-
tabase server), the system monitoring (providing an interface to the Information Service of the
Online Software and a local independent version). The message passing interface allows the
concurrent existence of multiple implementations at the same time. E.g. all of UDP, TCP and
raw ethernet sockets can be used by a single application in a given setup.

This clear separation between interfaces and implementations exists down to the lowest levels
like the thread interface and access to clocks and timers.

8.4.2.1.1 OS Abstraction Layer

The OS abstraction layer consist of packages hiding all OS specific interfaces. E.g. the threads
package hides the details of the underlying POSIX thread interface.

8.4.2.1.2 Error Reporting

The ErrorReporting package allows to log error messages either to stdout/stderr or to MRS.
Each package can define its own set of error messages and error codes. Error logging can be en-
abled/disabled on a package by package basis, with a separate debug and error level for each
package. Furthermore debug logs and normal error logs are treated logically differently, so the
debug message could go to stderr while all normal application logs go to MRS. The user only
interfaces via a set of macros to the ErrorReporting system. This allows to compile out the de-
bug macros for optimized builds.

8.4.2.1.3 Configuration Database

All applications make use of the Online Software configuration database through the API pro-
vided by these packages. The design uses the Bridge pattern described in Gamma et al. This al-
lows to change the underlying implementation without the client code noticing it.

The user’s view of the database is hidden by configuration objects, which read the database and
provide a more convenient way to access the information. Database schema file evolutions are
coped with an automated re-creation of the C++ code for these configuration objects out of the
schema file only

8.4.2.1.4 System Monitoring

This package allows every component to make arbitrary information available to some outside
client. In practice this is used to publish statistics like counters and histograms. Users inherit
from the Resource class and implement a virtual function. The packages makes this information
available in various different ways, including the Information Service of the Online Software.

Again the interface is strictly separated from the different implementations, so users are una-
ware of it and the implementation can change without them noticing it.

80 8 Data-flow

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8.4.2.1.5 Run Control

The run control interface is responsible for translating the requests from the Online Software
about state changes into commands for the application. It also provides a skeleton around
which one can build an application.

These classes realize most of the use cases for run control. They talk to a special DataCollection
Run Controller on the one side and to user code on the other side.

8.4.2.1.6 Message Passing

The Message Passing Layer defines a couple of classes to allow the sending and receiving of
messages. The Node, Group and Address classes are used at configuration time to setup all the
necessary internal connections.

The Port class is the central interface for sending data. All user data has be in part of a Buffer ob-
ject to send or receive it. The Buffer interface allows to add user defined areas which are not un-
der the control of the Message Passing layer to avoid copying.

The Provider class is an internal interface from which different implementations have to inherit.
Multiple Provider objects can be active at any given time. A Provider is basically the code to send
and receive data over a given protocol/technology, e.g. TCP, UDP or raw ethernet.

Using the DataCollection Application Framework, the DataCollection components were imple-
mented efficiently with maximum reuse of code and coherency in system aspects.

The interaction of the DataCollection components is detailed in the following to sections for
LVL2 DataCollection and event building.

8.4.2.2 Rol data collection

8.4.2.2.1 Design

This section should describe the interaction between applications which results in the collection of data at
the level 2 processing unit.

8.4.2.2.2 Performance

8.4.2.3 Event Building

8.4.2.3.1 Design

This section should describe the interaction between applications which results in the collection of event
fragments to form a complete event at the SFI. Should also include the aspects related to traffic shaping.

8 Data-flow 81

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8.4.2.3.2 Performance

8.5 Reliability and fault tolerance: this section has been moved to Chapter 6, "'Fault Tolerance and Error
Handling"

8.5 Configuration, control and operational monitoring

The sub-sections in this section have been moved to other chapters.
Local Controller: moved to Chapter 13, "Experiment control*.
Configuration data: moved to Section 10.2, "Databases".

Operational monitoring: moved to Chapter 7, ""Monitoring”

8.5 Scalability

8.5.1 Detector read-out channels

This section describes quantitatively how the physical size, performance and control and configuration of
the system scales with the “amount” of detector to be read-out.

8.5.1.1 Control and flow of event data

How the number of applications, messages and data volume changes.

8.5.1.2 Configuration and control

Amount of configuration data a function of the amount of detector.

8.5.2 Level 1rate

How the system performance and physical size scales with respect to the level 1 rate.

8.6 References
8-1 Trigger & DAQ Interfaces with Front-End Systems: Requirement Document http://
atlasinfo.cern.ch/Atlas/GROUPS/DAQTRIG/DIG/archive/document/FEdoc_2.5.pdf

8-2 ATLAS High-level Triggers, DAQ and DCS Technical Proposal, CERN/LHCC/2000-17,
31 March 2000.http://atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/SG/TP/
tp_doc.html

82 8 Data-flow

ATLAS

Technical Design Report

High-Level Triggers, DAQ and DCS 30 June 2003

8-3 The S-LINK Interface Specification. http://edmsoraweb.cern.ch:8001/cedar/
doc.info?document_id=110828

8-4 The raw event format, http://atlasinfo.cern.ch/Atlas/GROUPS/DAQTRIG/ROS/DAQ-
1_Note_050_update_la.pdf

8-5 Recommendations of the Detector Interface Group - ROD Working Group https://
edms.cern.ch/document/332389/1

8-6 The CMC standard. Common Mezzanine Cards as defined in IEEE P1386/Draft 2.0 04-
APR-1995, Standard for a Common Mezzanine Card Family: CMC (the CMC Standard).

8-7 Design specification for HOLA, https://edms.cern.ch/document/330901/1

8-8 Procedures for Standalone ROD-ROL Testing, G. Lehmann et. al., 27 July 2001, ATC-TD-
TP-0001 http://edmsoraweb.cern.ch:8001/
cedardoc.info?document_id=320873&version=1

8-9 ROS URD

8-10 Read out system high level design

8-11 ROS Local Controller

8-12 ROBIN Summary document

8-13 Readout sub-system test report (using DAQ -1.

8-14 ROBIN HLDD

8-15 ROBIN DLDD

8-16 ROBIN SWID

8-17 ROD crate DAQ design

8-18 ROD crate DAQ woekplan

8-19 Reference to the RACE board

8-20 ROS Test Report

8-21 Reference to FPGA emulators

8-22 ATL-DAQ-99-016

8-23 cite ATL-DA-ER-0016 & the corresponding muon-CTP i/f document

8-24 Data collection note # 012 ... to be moved into EDMS

8-25 Paper model results

8-26 Data Collection URD

8-27 Level 1 - Level 2 interface document

8-28 Rol Builder URD

8-29 Results of basic comms tests

8-30 Design of the message passing component

8-31 Documents supporting technology choices

8-32 DataCollection test report

8-33 DataCollection Local Controller

8 Data-flow 83

ATLAS

High-Level Triggers, DAQ and DCS

Technical Design Report
30 June 2003

84

8 Data-flow

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger

The chapters of Part 2 should contain the major components as identified by the architecture.

Details should be provided on design, implementation and supporting measurements. For each compo-
nent describe: the purpose/function/scope of the component, the performance requirements of the compo-
nent, the architecture of the component, a proposed implementation, and performance and validation
measurements.

The commonalities and differences between LVL2 and EF should clearly be shown.

Detailed design, and performance (where appropriate - performance of some components only relevant/di-
rectly measurable as a set-of components) of each component should be described in the sections below.

9.1 HLT Overview

4isend(LVL2Decision)

(uanz)puss:9

- =
<<subsystem>> <<subsystem>>

EventFi

5

QINSayTIAPUIST
(UoISPaAZIAPUSSZ'E

(uanz)puss’6
(uanz)puas:z

| LVL2 Selection and
EF Selection accepts
or rejects event.

9.2 Level 2

9.2.1 Overview

Includes use Rol mechanism (i.e. selective Read-out), requirements and interplay between com-
ponents.

9 High-level trigger 85

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9.2.2 Rol Builder

There is overlap with Chapter 8, ""Data-flow" on this component and only one chapter should describe it
in detail with the other just mentioning the specifics for that chapter.

Main description of design, implementation, interfaces etc should be in Chapter 8 (DataFlow). Here lim-
ited to a brief description of the functions (i.e. gathering together of the LVL1 Rol information and then
routing to a Supervisor processor)

9.2.3 LVL2 Supervisor

Main description of functions, design and implementation here in this chapter, should refer back to the
DataCollection Framework described in Chapter 8. The description here to include the load balancing as-
pects. (The DataFlow chapter should be limited to a description of function of the Supervisor in DataFlow
and the rate at which it handles messages - i.e. the performance measurements (30 kHz rate).)

9.2.4 LVL2 Processors

Need a description of how the software inside a LVL2 processor is structured. i.e. L2PU hosting the PSC,
which hosts the event selection code. Also how the algorithms access data data from the ROB’s with the
interface layers provided between the algorithm and the L2PU. Diagrams to be included here are ones
showing the multi-threaded nature of the Worker threads and the sequence diagram of what happens dur-
ing configuration and in the event loop.

Should include a statement about the possible use of FPGA’s here with a reference to the FPGA imple-
mentation back-up document, but note that this is not included in the baseline option.

9.24.1 L2PU

Main description of functions, design and implementation of L2PU given here in HLT, should refer back
to the DataCollection Framework described in Chapter 8. (The DataFlow chapter should cover the (mes-
saging) performance of the L2PU - i.e. the measurements of bandwidth and message rate in etc., includ-
ing Rol data gathering capability and scaling as extra processors are added.) Only performance numbers
to be recapped here are the rate at which a single processor can handle events.

9.2.4.2 PSC (PESA Steering Controller)

Decscription of the design and implementation of the PSC, how it sits inside the L2PU (including receipt
of LVL1_Result and return of LVL2_Result) how it provides various an ATHENA like environment for
the Event Selection code and the mechanisms for the algorithms to be configured. Should include some
performance results when sitting inside L2PU without running algorithms

9.2.4.3 Data access i/f's

Description of how the PESA DataManager can access Rol data from the L2PU. Not clear that there are
meaningful separate performance measurements for this.

86 9 High-level trigger

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Need a diagram here to showing how the London scheme is implemented in LVL2.

9.2.5 pROS

Main description is in Chapter 8, "Data-flow". Here just a brief note to describe the function from an
HLT perspective. i.e. The mechanism to receive the LVL2 result for inclusion in the built event - thus
passing the result from LVL2 to the EF.

9.2.6 LVL2 Operation

Here a brief description of how the LVL2 processors are configured, controlled and monitored, how they
are organised into sub-farms and how the farm-fabric is managed.

9.3 Event Filter

Description of EF DataFlow - event distribution, use of PT’s (providing ATHENA environ-
ment), use for Event Selection, for Calibration and data monitoring, generation of EF_Result,
appending EF_Result to the built event, passing accepted events back to main DataFlow.

3rd and last step of the event selection procedure
Works on the full available information (fully built event, downstream the Event Builder)

Make the largest possible use of offline environment and algorithms, possibly including the of-
fline implementations

Implementation very likely to happen on farms of standard computers (e.g. PC based)

9.3.1 High Level design

9.3.1.1 Functionality

logically decomposed in two parts :
= Event Handler
« Data flow
« processing tasks
= Supervision
< control

= monitoring

additional functionality may be envisaged in the fields of

9 High-level trigger 87

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

= detector (including trigger) monitoring

= online calibration and alignments

9.3.1.2 Operational Analysis
Details in HLT operational analysis (EDMS note)

Use cases and requirements to other sub-systems

9.3.2 Event Handler

9.3.2.1 Requirements
details in ATLAS-DAQ-2002-003

Functionality

= provide the functionality to the DAQ Data Collection to inject and receive events

= distribute events to spe
event header

processing tasks according to an event type contained in the

= provide the software infrastructure to perform the required treatment : filtering, monitor-
ing, calibration check, etc... inside the Processing Tasks.

= collect selected events for offline production according to the streams determined by the
classification.

Robustness

Reliability

9.3.2.2 Detailed design
EFD design

details in EF Dataflow design (EDMS note)
= 1 EFD process per processing node

= one or several external processing tasks running on the processing node as independent
processes (robustness)

= event passing via shared memory on memory-mapped files (efficiency)

= synchronisation ensured by EFD worker thread (next task)

PT design
= offline framework
= bytestream
= EF result

88 9 High-level trigger

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9.3.3 EF Supervision

9.3.3.1 Requirements
Details in ATLAS-DAQ-2002-004

Functionality

= process control

« process monitoring

= possibly hardware control and monitoring
Constraints

= connection with ATLAS general control

« finite state machine mapping

= interaction with end user

< via Online Software services
Robustness

Reliability

9.3.3.2 Detailed design

= Tree structure
= sub-farms organised around the data flow architecture (SFI)
< control at the sub-farm level

= use Online Software tools as much as possible

9.3.4 Extrafunctionality possibly provided by the Event Filter
= Directly in EFD context (by-products of calculations performed for selection, in the filter-
ing tasks or in independent monitoring tasks)

« orin dedicated parts of the Farm, specially fed by Data Collection, and working under the
control of the EF supervision

= Functionality in the fields of
= trigger monitoring
« detector monitoring

= online calibration and alignment (checks and/or computation)

9 High-level trigger 89

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9.4 Event selection software

ESS Architecture - requirements, design and implementation - including the main internal com-
ponents

This is the only place in the TDR where the overall design and implementation of the ESS is described.
This section should be a shortened form of what is in the PESA Framework requirements and design doc-
uments. However, given the complexity and importance of the material it will be substantial in length.

Configuration, control, supervision and operational monitoring: moved to several other chapters.
Describe here the HLT specific items and issues.
Thus:

1) LVL2 use same LocalController as DataCollection. Need to add something about the operational super-
vision of the LVL2 processors.

2) EF has the EF Supervision sub-system

3) Concept of sub-farms - how they are defined, and application configured

As far as possible common issues should be described in the OnLineSW chapter.

Issue - Should we include management of the sub-farm fabrics here? (Presumably yes)
Issue - Where do we cover algorithm configuration

(1 assume that data and algorithm related monitoring is included in the monitoring chapter).

9.5 References

9-1 LVL2 URD

9-2 EF DataFlow URD

9-3 EF Supervision URD
9-4 ESS Requirements Doc
9-5 ESS Design Doc

90 9 High-level trigger

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

10 Online Software

10.0.1 Introduction

The Online Software encompasses the software to configure, control and monitor the TDAQ but
excludes the management, processing and transportation of physics data. It is a customizable
framework which provides essentially the "glue" that holds the various sub-systems together. It
does not contain any elements that are detector specific as it is used by all the various configura-
tions of the TDAQ and detector instrumentation. It co-operates with the other sub-systems and
interfaces to the Detector Readout Crates, the Detector Control System (DCS), the Level 1 Trig-
ger, the Data-flow, the High Level Trigger processor farms, the Offline Software and to the hu-
man user as illustrated in Table 10-1.

Table 10-1 The Online Software in relation to the TDAQ system

Detector Control
System

7“?“““““1,
(@)

g LVL1 Trigger

1 Data-flow |

High Level

SO 3-=5

Trigger
ATLAS ._.U>\OL,

-
\
\
-

Offline Software

An important task of the Online Software is to provide services to marshal the TDAQ through
its start-up and shutdown procedures so that they are performed in an orderly manner. It is re-
sponsible for the synchronisation of the states of a run in the entire TDAQ system and for proc-
ess supervision. These procedures are aimed to take a minimum amount of time to execute to
reduce the overhead since this affects the total amount of data that can be taken during a data-
taking period. Verification and diagnostic facilities help for early and efficient problem finding.
Configuration database services are provided for holding the large number of parameters
which describe the system topology, hardware and software components and running modes,
based on the partitioning model. During data taking, access to monitoring information like sta-
tistics data, sampled data fragments to be analysed by monitoring tasks, histograms produced
in the TDAQ system, and also to the errors and diagnostic messages sent by different applica-
tions is provided. User interfaces display the status and performance of the TDAQ system and
allow the user to configure and control his operation. These interfaces provide comprehensive
views of the various sub-systems at different levels of abstraction.

10 Online Software 91

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

The Online software has various types of users. The TDAQ Operator runs the TDAQ system in
the control room during a data-taking period, the TDAQ Expert has system-internal knowledge
and can perform major changes to the configuration, the Sub-system or Detector Expert is respon-
sible for the operation of a partcular sub-system or detector and TDAQ and detector software ap-
plications use services provided by the Online software via application interfaces.

remark: the following definitions will be available from the TDAQ glossary to which only a reference will
be made.

The following types of Online Software users have been identified:

1. TDAQ Operator - this user is responsible for using the TDAQ system to take data during a partic-
ular data taking session, for example during a shift. He has to be able to start, monitor and stop
data taking. He is not expected to perform any programming tasks related to the Online Software.

2. TDAQ Expert - this user is responsible for running and maintaining the TDAQ system itself. He
is responsible for the initialisation and shutdown of the TDAQ system or parts of it. He shall have
a knowledge of the TDAQ structure and its components.

3. TDAQ Sub-System or Detector Expert - this user is responsible for the operation of a particular
sub-system of the TDAQ or particular sub-detector of the ATLAS detector. He should be capable of
describing the specific TDAQ sub-system or detector configuration and diagnosing the specific
sub-system or detector problems which may appear during operation.

4. TDAQ Sub-System or Detector - this user represents a software produced by the TDAQ Sub-Sys-
tem or Detector developers. This software will use the services provided by the Online Software for
the sub-systems and detectors configuration and control.

The user requirements to the Online Software are collected and described in the corresponding
document [10-1].

10.0.2 The Architectural Model

The Online Software architecture is based on a component model and consists of three high-lev-
el components, called packages. Details on the architecture and a comprehensive set of use cas-
es are described in [10-2]. Each of the packages is associated with a functionality group of the
Online software. For each package a set of services which it has to provide is defined. The serv-
ices are clearly separated one from another and have well defined boundaries. For each service
a low-level component, called sub-package, is identified. Each sub-package contains as many
classes implementing a specific functionality as boundary classes are necessary providing inter-
faces for a variety of the Online Software users.

Each package is responsible for a clearly defined functional aspect of the whole system.

1. Control and Supervision - contains sub-packages for the control of the TDAQ system and
detectors. Control sub-packages exist to support TDAQ system initialisation and shut-
down, to provide control command distribution, to start and stop processes within the
TDAQ system and to execute tests requested by a user.

2. Databases - contains sub-packages for configuration of the TDAQ system and detectors.
Configuration sub-packages exist to support system configuration description and access
to it, record operational information during a run and access to this information. There
are also boundary classes to provide read/write access to the conditions storage.

92 10 Online Software

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

3. Information Sharing - contains classes to support information sharing of the TDAQ sys-
tem and detectors. Information Sharing classes exist to report error messages, to publish
states and statistics, to distribute histograms built by the sub-systems of the TDAQ sys-
tem and detectors and to distribute events sampled from different parts of the experi-
ment’s data flow chain.

The following sections describe these packages in more details.

10.1 Control and Supervision

The main task of the control and supervision package is to provide the necessary tools to per-
form the system operation as they are described in Chapter 3. It provides the functionality of the
TDAQ Control as shown in the controls view of the Chapter 5.

In addition the package has the responsibility for functionalities necessary in the computing en-
vironment for user interaction, process management and access control.

10.1.1 Functionality of the Control and Supervision

Control and Supervision encompasses software components responsible for the control and su-
pervision of other TDAQ systems and the detectors. The functionalities have been derived from
the user requirements and are described in turn.

= User Interaction: Interaction with the human user like the operator or system expert of
the TDAQ system

« Initialization and shutdown: Initialisation of TDAQ hardware and software components
is foreseen. The operational status of system components must be verified and the initial-
isation of these components in the required sequence is ensured. Similar considerations
are required for the shutdown of the system.

= Run control: System commands have to be distributed to a range of several hundred to
thousand of clients programs. The control sub-package is responsible for the command
distribution and the required synchronisation between the TDAQ sub-systems and detec-
tors.

= Error handling: Malfunctions can interrupt system operations or deteriorate the quality
of physics data. It is the task of the control sub-package to identify such malfunctions. If
required the system will then perform autonomously recover operations and assist the
operator with diagnostic information.

= Verification of System status: The control and supervision package is responsible to ver-
ify the functionality of TDAQ configuration or any subset of it.

Process Management: Process management functionality in a distributed environment is
provided.

Resource Management: Management of shared hardware and software resources in the
system is provided.

= Access Management: The control and supervision package provides a general Online
software safety service, responsible for TDAQ user authentication and the implementa-

10 Online Software 93

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

tion of an access policy for preventing non-authorised users to corrupt TDAQ functional-
ity.

10.1.2 Performance and Scalability Requirements on the control and supervision

The control of the TDAQ system will be performed in a hierarchically distributed manner in so-
called local controllers. Their number is estimated to be in the range of 500 to 2000. The respon-
sibilities of these controllers depends on its task in the TDAQ system and in the detectors. Some
of these local controllers will control the operation of hardware devices, others interact with
large processing farms. A detailed explanation can be found in the chapter on Experiment Con-
trol.

10.1.3 Architecture of Control and Supervision

The Control and supervision package is divided into a number of sub-packages as shown in
Figure 10-1.

Figure 10-1 The Organization of the Control and Supervision package

Control
and supervision
[
ul <-q---
\\\\\\\ = ; Operator
[PP y 4 '
= - !
!
Verification [=------ Supervision !
|
N Ve 7 H
et , |
— A v —l
Resource Process . Access
Mgmt Mgmt Mgmt

The functionality described in Section 10.1.1, "Functionality of the Control and Supervision" has
been distributed to several distinct sub-packages:

= The User Interface (Ul) for interaction with the operator

= The Supervision for the control of the data-taking session including initialization and
shutdown, and for error handling

= The Verification framework for analysis of the system status

= The Process Management for the handling of processes in the distributed computing en-
vironment

= The Resource Management for coordination of the access to shared resources

= The Access Management for providing authentication and authorisation when necessary

94 10 Online Software

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

10.1.3.1 Interaction of the Control and Supervision System with other Online SW packages

The Control and Supervision package interacts with the other Online Software packages as
shown in Figure 10-2. The Databases package is used to describe the system to be controlled.
This includes in particular the configuration of TDAQ Partitions, TDAQ Segments and TDAQ
Resources. The Information Sharing package provides the infrastructure to obtain and publish
information on the status of the controlled system, to report and receive error messages and to
publish results for interaction with the operator.

Figure 10-2 Interaction of the Control package with other Online Software packages

Report/Receive Select
Error Configuration
\Oﬂ . . \NO/‘_
Information Control and Databases
Sharing Supervision [~ - - -=>0—
/ON . Get Object

Get/Publish Information ~
Subscribe to Data Changes

10.1.3.2 User Interface

The User Interface (Ul) provides an integrated view of the TDAQ system to the operator and
should be the main interaction point. It is foreseen to provide a flexible and extensible Ul that
can accommodate panels implemented by the detectors or TDAQ systems.

Web based technologies will be used in particular for the access to the system for off site users
and text based utilities will be provided in addition. Other technologies are under
consideration.

10.1.3.3 Supervision and Verification

The Supervision sub-package realizes the essential functionality of the Control package. The
sub-package itself has a coordinating role and interfaces via a Local Controller to other TDAQ
system or detector specific controllers. Via the User Interface sub-package it provides to the
Operator all TDAQ control facilities. These are expressed as interfaces in Figure 10-3 and
discussed below in more details.

Several main functionality domains have been identified: the Setup is concerned with the
initialization and the verification of the system, the Run Supervisor is responsible for the data-
taking activity and the Error Handling with the error response and the recovery from system
failures.

The Setup is responsible for

= initialization of TDAQ hardware and software components, bringing TDAQ partition
to the state when it can accept Run commands.

= reinitialization of a part of the TDAQ partition
= shutting the TDAQ partition down gracefully

10 Online Software 95

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

The Run Supervisor is responsible for

= controlling the Run by accepting commands from the user and sending commands to
TDAQ sub-systems

= analysing the status of controlled sub-systems and presenting the status of the whole
TDAGQ to the Operator

The Error Handling is concerned with
= analysing run-time error messages coming from TDAQ sub-systems

= diagnosing problems, proposing recovery actions to the operator or performing
automatic recovery if requested

Most of the above defined functionality can reside on the local controller and be extended by
defining specific policies which the TDAQ sub-systems and detector expert developers
implement. Currently a rule based Expert System is the preferred design choice.

The Verification sub-package is responsible for the verification of the functionality of the
TDAQ system or any subset of it. It uses developer’s knowledge to organize tests in sequences,
analyse test results, diagnose problems and provide a conclusion about the functional state of
TDAQ components. An expert system is a likely design choice for knowledge representation
and reasoning.

Figure 10-3 Interfaces of the Supervision and Verification sub-packages

Policy/Knowledge

Setup -
1 .
TDAQ Expert
Local Controller o Run Supervision
- Supervision ~
Rl T~ m:&m_w_ﬂsa__:a
e N N N N
S A \
N N A ~ N \
N N
sub-system - AN AN
DA Verification WU -
Test Verify Functionality)
Operator (via Ul)

A TDAQ sub-system developer implements and describes tests which are used to verify any
SW or HW component in a configuration. This includes also complex test scenario, where the
component functionality is verified by the simultaneous execution of processes on several
hosts. The sub-system uses the Process Management sub-package for the execution of tests.

The Verification sub-package is used by the Supervision to verify the state of the TDAQ
components during initialization or recovery operations. It can also be used directly by the
Operator via Ul, as it is shown on Figure 10-3.

96 10 Online Software

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

10.1.3.4 Process, Access and Resource Management systems

The Verification and Supervision sub-packages connect via interfaces to other Control sub-
packages, as shown in Figure 10-4.

Figure 10-4 Interfaces of the Process management, resource Management and the Access Management

Start/Stop
Process \Oﬂ/ Tl o
Mgmt /_,_mou_ﬁoﬁ N Verification
’ // A T N N R
— '\ . Authenticate L
Access .
Mgmt Supervision
—]
xm_w_o”“um ul
9 Lock/Unlock

The Process Management provides basic process management functionality in a distributed
environment. This functionality includes starting, stopping and monitoring processes on
different TDAQ hosts.

The Resource Management is concerned with the allocation of software and hardware
resources between running partitions. It prevents the operator from performing operations on
resources which are allocated to other users.

The Access Management is a general Online “software safety* service, responsible for TDAQ
user authentication and implementation of an access policy, in order to disable non-authorised
persons to corrupt eventually TDAQ functionality.

10.1.4 Prototype Evaluation
Main parts of the required functionality for the final system have been evaluated in the proto-
type implementation of the Online System [10-4].

= A Run Control implementation is based on a State Machine model and uses the State ma-
chine compiler CHSM as underlying technology.

« A Supervisor is mainly concerned with process management. It has been build using
Open Source expert system CLIPS.

= A verification system, DVS, performs tests and provides diagnosis. It is again CLIPS
based.

= AJavabased graphical User Interface, IGUI

= Process Management and Resource Management are implemented based on other com-
ponents provided by the other current implementation of the Online Software packages.

10 Online Software 97

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Large Scale scalaility tests have been performed [10-3] to verify the functionality of the proto-
type [10-4]. It could be shown that a test configuration in the range of the foreseen system can
successfully be controlled.

Some plot form the scalability test
More description of the scalability test

For the final system a new evaluation of expert system technologies has been started. CLIPS has
been evaluated in the prototype implementation and related products like Jess, a similar imple-
mentation based on Java and the commercial alternative Eclise by Haley. Inc. are studied.

In the evaluation we have also investigated other alternatives, like scripting based solutions. We
have studied the use of SMI++, a scripting language for the description of interaction state ma-
chines, which is used by several HEP experiments. Furtheron we have considered a possible im-
plementation based on other scripting languages like Python. While each of these approaches
has its particular merits, our evaluation showed that the CLIPS based solution is better suited
for our environment and is the favoured implementation choice.

10.2 Databases

The TDAQ systems and detectors require several persistent services to access description of the
configuration used for the data taking as well as to store the conditions under which the data
were taken. The online software provides common solutions for such services taking into ac-
count requirements coming from the TDAQ systems and detectors.

10.2.1 Functionality of the Databases

There are three main persistent services proposed by the online software:
= the configuration databases to provide the description of the system configurations,
= the online bookkeeper to log operational information and annotation,

= the conditions databases interface to store and read conditions under which data were
taken.

10.2.1.1 Configuration Databases

The configuration databases are used to provide overall description of the TDAQ systems and
detectors hardware and software. It includes description of partitions defined for the system
and parameterized for different types of runs describing the hardware and software used by a
given partition and their parameters.

The configuration databases are organized in accordance with the actual hierarchy of the TDAQ
system and detectors. The configuration databases give a possibility for each TDAQ system and
detector to define their own format of the data (i.e. the database schema), to define the data
themselves and to share the schema and the data with others. The configuration databases pro-
vide graphical user interfaces to browse the data by any human user and to modify the data by
authorized human experts. The configuration databases give possibility to generate data access

98 10 Online Software

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

libraries which hide the technology used for the databases implementation and can be used by
any TDAQ or detector application to read the configuration description or to be notified in case
of it’s changes. An application started by the authorized expert can use the data access libraries
to generate or to modify the data.

The configuration databases provide efficient mechanism for fast access to the data for huge
number of clients during data taking. They do not store the history of the data changes but pro-
vide archiving options. Configuration data which are important for offline analysis must be
stored in the conditions databases.

10.2.1.2 Online Bookkeeper

The online bookkeeper is the system responsible for the online storage of relevant operational
information and configuration description provided by the TDAQ systems and detectors. The
OBK organizes the stored data on a per-run basis and provides querying facilities.

The online bookkeeper provides graphical user interfaces to allow human users to browse con-
tents of the recorded information or append such information. The append access is limited for
authorized users only. Similarly, the online bookkeeper provides application programming in-
terfaces for user applications to browse the information or to append annotations.

10.2.1.3 Conditions Databases Interfaces

The TDAQ systems and detectors use the conditions databases to store conditions which are
important for the offline reconstruction and analysis. The conditions data are varying with time
and physical parameters such as temperature, pressure and voltage. These conditions are stored
with a validity range (typically time or run number) and retrieved using time or run number as
a key.

The conditions databases are implemented and supported by the offline software group. The
online software group provides application programming interfaces for all TDAQ systems and
detector applications and mechanisms to insure required performance during data taking runs.

remark: details of the functionality of the Conditions Database interface are still under discussion and the
therefore the content of the explication given above may change.

10.2.2 Performance and Scalability Requirements on the Databases

remark: The performance and scalability requirements to the databases provided by the online software are
not finalized by the users at the moment of the document writing.

10.2.2.1 Configuration Databases

The performance and scalability requirements to the configuration databases are strongly de-
pendent on the strategies chosen by the TDAQ systems and detectors to get the configuration to
their applications. For detectors, ROS, LVL1 and DC the number of applications reading the
configuration databases is defined by the number of run controllers and supervisors, and it is
less than 700 in total. For LVL2 it depends on the size of the system and varies from 100 to 1000.

10 Online Software 99

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

For EF the situation is not defined yet and the number of database clients in the worse scenario
can O(10%), if each processing task will read configuration description itself.

remark: What should we say about DCS?

The configuration information can be split on several non overlapping domains. The complete
configuration description is required only to few applications in the system, while most others
require to read only a small fraction of it. Each TDAQ system and detector in a worse scenario
requires not more than O(102) MBytes of configuration data and maximum number of clients
per system and detector is limited by O(102) except EF.

The configuration data are read once during starting of the data taking and an acceptable time
to get full configuration for the whole system is around one minute. During the data taking of
physics data the configuration may slightly be changed and an acceptable time to get the con-
figuration changes by registered applications is several seconds. The configuration can be
changed considerably during special calibration runs. The maximum rate required in this case
is 10 Mbytes produced in one hour.

10.2.2.2 Online Bookkeeper

remark: no final requirements yet

10.2.2.3 Conditions Databases

remark: requirements to be written

10.2.3 Architecture of Databases

remark: the content of this paragraph may be moved to Section 10.2.1, "Functionality of the Databases".

10.2.3.1 Configuration databases
The ConfDB (Configuration Databases) provide user and application programming interfaces.

Via a user interface the software developer defines the data object model (i.e. the database sche-
ma) describing required configurations. The expert uses the interface to manage databases, to
put the system description and to define configurations, which can be browsed by a user.

A TDAQ or detector application accesses databases via data access libraries (DAL). A DAL is
generated by the software developer for a part of the defined object model relevant to his sub-
system. The DAL is used by any process required to get the configuration description or to re-
ceive a notification in case of it’s changes. Also, the DAL is used by an expert process needed to
produce the configuration data.

The ConfDB system contains the following classes:

= ConfDB Repository - defines low-level interfaces to manipulate the configuration data-
bases including databases management, schema and data definitions and notification
subscription on data changes

100 10 Online Software

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

= ConfDB Ul (User Interface) - defines user interface for object model definition, configura-
tions definition, database browsing and population by human actors

= ConfDB DAL Generator - defines interface to produce DAL

= ConfDB DAL - defines interfaces for configurations selection, reading and writing con-
figuration objects and subscription for notifications on data changes by the user and ex-
pert processes (to receive notification a process shall realize ConfDB Data Monitor
interface)

The ConfDB Repository class defines interfaces above a DBMS used for implementation and
hides any specific details, so any other ConfDB classes shall never use DBMS-specific methods
directly.

The Figure 10-1 shows interfaces provided by the configuration databases and their users.

1
ConfDB DAL

Generator Om -

’ N
P ~

<<prodices>> - Define
/ Manage "~ Object Model
Notify Objects ' Notify Data DBs ﬁumﬂﬂ/
Changes % Y Changes] SR _
scnterface>> f——O< -1 o ps f—O<""| confos % -
ConfDB Data b Get Schema ConfDB
Monitor | DAL o Repository) ul
i i “\ Subscribe Data Put Schema _ -~
D mccmmﬂwmmo%_mnﬁ //// Changes Get Put e
I N Data Data P
Select NN -7~ Browse
” Configuration Sa- .
, - ’ N =
- N -
e \mm.ﬁ\oyc_mﬂ So- ~ Put Object
e Put Object K4
User Process L <" .- Define

. - Configuration

Expert Process

Figure 10-5 Configuration databases users and interfaces

10.2.3.2 Online bookkeeper

The OBK provides several interfaces to its services, being that some of them are human orient-
ed, while others are Application Programming Interfaces (APIs) to allow interfacing with client
applications. The access to these interfaces depends on the user’s (human or system actor) priv-
ileges.

10 Online Software 101

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

The OBK uses as persistency backbone the Conditions and Time-Varying offline databases serv-
ices. In this sense, it counts on those services to provide the necessary means to store and re-
trieve coherently data that changes in time and of which there may exist several versions (e.g.
configurations). In Figure 10-2 it is possible to observe the logical subdivision of the OBK sys-
tem into abstract classes. Of these, the main ones are:

= OBK Repository - defines the basic methods to allow the storing, modifying and reading
of online log data, as well as the methods to set the OBK acquisition mode and also to re-
quest log data from the several TDAQ processes providing them. It allows a human or
system actor to start or stop the acquisition of log data. In order to become a log data pro-
vider a TDAQ application will have to realize the OBK Log Information Provider inter-
face. This interface will allow a TDAQ application to accept subscriptions for log
information from the OBK, as well as for the OBK to access log information in a TDAQ
application;

= OBK Browser - this is the class responsible for providing the necessary querying func-
tionality for the OBK database. Since the data browsing and data annotation functions are
tightly coupled, the class also includes functionality to add annotations to the database;

= OBK Administrator - the OBK Administrator class provides to the users which are grant-
ed enough privileges the functionality to alter (delete, move, rename) parts or all of the
OBK database. These users also given the possibility of changing the OBK acquisition
mode (e.g. data sources, filters for the data sources).

Apart from the main classes depicted in Figure 10-2, OBK’s architecture also includes four other
classes (not shown in the diagram for reasons of clarity): OBK Ul Browser and OBK Browser
API both inherit from the OBK Browser class and define the human client oriented and the ap-
plication client oriented versions of that class; the same thing happens for the OBK Ul Admin-

102 10 Online Software

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

istrator and the OBK Administrator API classes which defines the human client and
application client oriented versions on the OBK Administrator class.

i
Get Info OfflineDB
O=-_ - = ibrary
- Subscribe <<import>>
<<interface>> O - __ -
OBK Log Info d OBK Set acquisition mode
o Notify Repository
Provider .
H-- + Administrate

D \

1 Start/Stop //

' Annotate, acquisition O
L
—

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

files of which subset can be combined to get a complete description. The access to the configura-
tion description can be made via file system (C++ interface) and via dedicated remote database
server built on top of ILU (freeware CORBA implementation) and tested for C++ and Java inter-
faces.

Below there are results obtained during online software performance and scalability tests [10-3]:

Time Time Time

Number of clients (1-200)

Number of clients (1-200)

Number of clients (1-120

Reading 5 MBytes of data
via afs file system

Reading 5M Bytes of data
via database server

Reading 20 KBytes of data
via database server

‘- Browse ,
RN 0BK
OBK | . Administrator
TDAQ Process s
Q Browser | N
I N .
| - Define acq
Browse and annotate J AR and administrate log data
log data - .
- N
....... Ol 3
- ToIae e
e e
- -
User e -
e P / \, User _uanmmm
e -7 - N /
- -7 N
- 7 -7 - N
P
Expert

Expert Process

Figure 10-6 OBK users and interfaces

10.2.3.3 Conditions Database Interface

to be clarified after Databases workshop and the following workshop on ‘non-event-databases’

10.2.4 Application of Databases by the TDAQ Sub-systems

Usage of the databases by the other TDAQ systems, concentrating on differences with general
use.

Should be provided by TDAQ systems

10.2.5 Prototype Evaluation
10.2.5.1 Configuration Databases

The prototype [10-4] of the configuration databases is implemented on top of the OKS persistent
in-memory object manager. It allows to store the database schema and data in multiple XML

10 Online Software 103

Figure 10-7 The results of the configuration databases performance and scalability tests

The tests with direct access of the configuration via common afs file system had shown good
scalability and performance and such approach can be used if a common file system will be
available. The graphs of the tests with access via the remote database server indicate the
number of the servers which need to be started depending on number of clients, amount of data
they read and time requirements.

The proposed architecture of the configuration databases allows to switch between implemen-
tation technologies without affecting user code. Other database technologies are studied as pos-
ible alternative of the one used in the prototype including relational databases like MySQL and
ORACLE with possible object extensions and the POOL project supported by CERN IT divi-
sion.

10.2.5.2 Online Bookkeeper

The prototype of the online bookkeeper was implemented on OKS persistent in-memory object
manager and MySQL freeware implementation of relational database management system. Re-
sults obtained with the current MySQL implementation during performance and scalability
tests [10-3] have shown, that it allows to reach a rate of 20 KBytes per second when storing mon-
itoring data (100 bytes per data item) produced by up to 100 providers.

remark: no technology evaluation, we will use offline solution for Conditions & Time-Varying databases
10.2.5.3 Conditions Databases Interfaces

remark: we have no prototype of the Interface, there is prototype of the Conditions Databases only. Should
we mention it?

104 10 Online Software

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

10.3 Information Sharing

The choice of name for this section is not final. A possible alternative could be “Monitoring services”.
This would then be applied to the whole of the document where one talks about these services.

There are several areas where information sharing is necessary in the TDAQ system: synchroni-
sation between processes, error reporting, operational monitoring, physics event monitoring,
etc. The Online Software provides a number of services which can be used to share information
between TDAQ software applications. This chapter will describe the architecture and prototype
implementation of these services.

10.3.1 Functionality of the Information Sharing Services

Any TDAQ software application may produce information which is of interest for the other
TDAQ applications. The first application will be called in this chapter Information Provider, the
later ones will be called Information Consumers, which indicates that they are users of the in-
formation. Any TDAQ software application may be Information Provider and Information
Consumer at the same time. The main responsibility of the Information Sharing services is:

= transportation of the information from the Information Providers to the Information Con-
sumers

« delivery of information requests from the Information Consumers to the Information Pro-
viders.

Figure 10-8 shows main interactions which providers and consumers may have with the Infor-
mation Sharing services.

data Information data
— . —
S— Sharing
< d Services ¢a
. comman comman N
Information Information
Provider Consumer

Figure 10-8 Information Sharing in the TDAQ system

10.3.2 Performance and scalability requirements on Information Sharing

It is expected that the TDAQ system will contain about O(103) processes. Each of those process-
es can produce information of different types. Therefore each Information Sharing service shall
be able to serve O(103) Information Producers simultaneously.

The number of Information Consumers for any single information item is expected to be about
O(1) processes. Therefore each Information Sharing service shall be able to serve O(1) Informa-
tion Consumers of each information item simultaneously.

The time to transport a single information object from the Information Provider to all the inter-
ested Information Receivers shall be about O(1) milliseconds.

10 Online Software 105

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

10.3.3 Architecture of Information Sharing Services

The Online Software provides four services to handle different types of shared information.
Each service offers the most appropriate and efficient functionality for a given information type
and provides specific interfaces for both Information Providers and Consumers. Figure 10-9
shows the existing services.

. Error Online Event
Information . . . -
) Reporting Histogramming Monitoring
Service . . .
Service Service Service

Inter Process Communication

Figure 10-9 Information Sharing services

The Inter Process Communication (IPC) is a basic communication service which is common for
all the other Online Software services. It defines high-level API for the distributed object imple-
mentation and for remote object location. Any distributed object in the Online Software services
has common basic methods which are implemented in the IPC. In addition the IPC implements
partitioning, allowing to run several instances of the Online Software services in different
TDAQ Partitions concurrently and fully independently.

10.3.3.1 Information Service

The Information Service (IS) allows software applications to exchange user-defined informa-
tion. Figure 10-10 shows interfaces provided by the IS.

Subscribe Send
<<interface>> f- - >0O— Command [<<interface>>
InfoConsumer ZO:W Information --=0 InfoProvider
B — T Service Publish/
A Get Info Update X
' R4 7) ~. '
1 \\ ~ e 1
Inférmation Inférmation
Consumer Provider

Figure 10-10 Information Service interfaces

Any Information Provider can make his own information publicly available via the Publish in-
terface. Then there are two possibilities. The Information Provider, which does not implement
the InfoProvider interface, has to inform the IS about all the changes of the information via the
Update interface. The Information Provider, which implements the InfoProvider interface, up-

106 10 Online Software

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

dates the information only when it is explicitly requested by the IS via the Send Command in-
terface.

There are also two types of Information Consumers. One can access the information by request
via the Get Info interface. This one does not need to implement the InfoConsumer interface. The
Information Consumer, which implements the InfoConsumer interface, is informed about
changes of the information, for which it subscribed via the Subscribe interface.

10.3.3.2 Error Reporting Service

The Error Reporting Service (ERS) provides transportation of the error messages from the soft-
ware applications which detect these errors to the applications which are responsible for their
handling. Figure 10-11 shows interfaces provided by the Error Reporting Service.

Subscribe Send
<<interface>> ---=0O— Error
ErrorReceiver Zm:? Error Reporting f—QO==------
E T Service
Information
AN Provider

Information
Consumer

Figure 10-11 Error Reporting Service interfaces

An Information Provider can send the error message to the ERS via the Send Error interface.
This interface can be used by any application which wants to report an error. In order to receive
the error messages an Information Consumer has to implement the ErrorReceiver interface and
construct the criteria which defines what kind of messages it wants to receive. This criteria has
to passed to the ERS via the Subscribe interface.

10.3.3.3 Online Histogramming Service

The Online Histogramming Service (OHS) allows applications to exchange histograms. The
OHS is very similar to the Information Service. The difference is that the information which is
transported from the Information Providers to the Information Receivers has pre-defined for-
mat. Figure 10-12 shows interfaces provided by the Online Histogramming Service.

The OHS sub-package will provide also a human user interface in a form of an application. This
application is called Histogram Display and can be used by the TDAQ operator to display avail-
able histograms.

10 Online Software 107

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

[]

Subscribe Send
<<interface>> f------ >0—|) Command [<<interface>>
HistoReceiver Update Histo Online --=0 HistoProvider

L O<= Histogramming
Service —O=--
Get Histo Publish/

JAN P um Update Histo JAY

. <<application>>
Histogram Display

Inférmation Information
Consumer Provider

Figure 10-12 Online Histogramming Service interfaces

10.3.3.4 Event Monitoring Service

The Event Monitoring Service (EMS) is responsible for transportation of physical events or
event fragments sampled from well-defined points in the data flow chain to the software appli-
cations which can analyse them in order to monitor the state of the data acquisition and the
quality of physics data of the experiment. Figure 10-13 shows main interfaces provided by the
Event Monitoring Service.

Subscribe Start/Stop
<<interface>> P-- - >=O—— Sampling [<<interface>>
EventReceiver || Add Event |Event Monitoring B ® EventSampler
—O=--- Service FO=---
Get Event Add
fAN PAN
_ \\Oﬂ, Event _
L ;
L <<application>>
Event Dump
Inférmation Inférmation
Consumer Provider

Figure 10-13 Event Monitoring Service interfaces

The application which is able to sample events from a certain point of the data flow has to im-
plement the Event Sampler interface. When the Information Consumer requests the samples of
events from that point, the EMS system ask the Information Provider via the Start Sampling in-
terface to start sampling process. The Information Provider samples events and provides them
to the EMS via the Add Event interface. When there are no more Information Consumers inter-
esting in event samples from that point of the data flow chain, the EMS system ask the Informa-
tion Provider via the Stop Sampling interface to stop sampling process.

There are also two types of interfaces for the Information Consumer. One is a simple Get inter-
face which allows consumer to ask event samples one by one when they become necessary. This

108 10 Online Software

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

interface will be used for example by the Event Dump application that implements a human
user interface to the EMS system. A second interface is based on the subscription model. Using
it the Information Consumer can ask the EMS system to supply the samples of event as soon as
they are sampled by the Information Provider. This interface is more suitable for the monitoring
tasks which need to monitor events for a long time in order to accumulate the necessary statis-
tics.

10.3.4 Application of Information Sharing Services to the TDAQ sub-systems

Usage of the information services by the other TDAQ systems, concentrating on differences with general
use.

Should be provided by TDAQ systems

This sub-section should only exist if the information is not already covered in Chapter 7, “Monitoring”.

10.3.5 Prototype evaluation

The prototype implementations have been done for all the Information Sharing services. These
prototypes are aiming to proof the feasibility of the chosen design and implementation technol-
ogy for the final TDAQ system, and to be used for the ATLAS test beams. This chapter contains
description of the services implementation along with their performance and scalability test re-
sults.

10.3.5.1 Description of the Current Implementation

The Online Software provides prototype [10-4] implementations for all the Information Sharing
services. Each service is implemented as a separate software package with both C++ and Java
interfaces. All the services are partitionable in a sense that it is possible to have several instances
of each service running concurrently and fully independently in different TDAQ partitions.

The Information Sharing services implementation is based on the Common Object Request Bro-
ker Architecture (CORBA) defined by the Object Management Group (OMG). CORBA is a ven-
dor-independent specification for an architecture and infrastructure that computer applications
use to work together over networks. The most important features of the CORBA are: object ori-
ented communication, inter-operability between different programming languages and differ-
ent operating systems, object location transparency.

10.3.5.2 Performance and scalability of current implementation

The most exhaustive tests have been done for the Information Service which provides the most
general facility for the information sharing. The other services are implemented on the same
technology and will offer the same level of performance and scalability as the IS.

The test bed for the IS test consists from 216 dual-pentium PCs with processor frequency from
600 to 1000 MHz. [10-3] The IS has been set up on one dedicated machine. Another 200 ma-
chines have been used to run from 1 to 5 Information Providers on them. Each Information Pro-
vider publishes one information object at the start and then updating it once per second. The

10 Online Software 109

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

last 15 machines were used to run 1, 5, 10 or 15 Information Consumers which subscribe for all
the information in the IS. Whenever an Information Provider changes the information, this new
information was transported to all the Information Consumers.

The time for transporting information from one Information Provider to all the subscribed In-
formation Consumers have been measured. Figure 10-14 shows the average of the measured
time as a function of the number of Information Providers working concurrently.

wm_::m fmz)
—= "1 receiver" : : :

8 "0 receivérs

71 B "0 receivers”.

- "1h receivers" . . .
m o e e e .

0 ; ; ; ;
] 2000 40 By Bty L0y
Mumber of information providers

Figure 10-14 Time spent to transport one information object from one Information Provider to a number of
Information Consumers vs. the number of concurrent Information Providers.

10.4 References

10-1 Online Software Requirements
http://atlas-onlsw.web.cern.ch/atlas-onlsw/documents/documents_page.htm
10-2 Online Software Architecture
http://atlas-onlsw.web.cern.ch/atlas-onlsw/documents/documents_page.htm
10-3 Test Report of Large Scale and Performance tests, January 2003, in preparation
10-4 Summary document used as input to the ATLAS TPR document

Altas DAQ-1 technical notes
Conference Papers
http://atlas-onlsw.web.cern.ch/atlas-onlsw/documents/documents_page.htm

10-5 Notes on technology evaluation - to be written
10-6 References to external documens on used or evaluated technology
110 10 Online Software

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

11 DCS

The chapters of Part 2 should contain the major components as identified by the architecture.

Details should be provided on design, implementation and supporting measurements. For each compo-
nent describe: the purpose/function/scope of the component, the performance requirements of the compo-
nent, the architecture of the component, a proposed implementation, and performance and validation
measurements.

11.1 Introduction

The principle task of DCS is to enable the coherent and safe operation of the ATLAS detector.
Safety aspects are treated by DCS only at the least severe level. All actions initiated by the oper-
ator and all errors, warnings and alarms concerning the hardware of the detector are handled
by the DCS. Concerning the operation of the experiment, an intense interaction with the DAQ
system is of prime importance.

To be done...
+ This introduction has to be expanded and wording be reviewed.

+ Description of what is contained in this chapter

11.2 Organization of the DCS

The architecture of the DCS and the technologies used for its implementation are strongly con-
strained by environmental and functional reasons. The DCS consists of a distributed Back-End
(BE) system running on PCs, which will be implemented with a Supervisory Control And Data
Acquisition system (SCADA), and of the different Front-End (FE) systems.

The DCS can be partitioned into vertical slices as shown in figure XXX (ref to the picture below).
Such a partition can be operated completely independent from other slices of the DCS and
offers full SCADA functionality to its users. A vertical slice controls a subsystems of the ATLAS
detector, where a subsystem is defined as an arbitrary part of the detector, e.g. the high voltage
system of a subdetector or the subdetector itself.

The DCS FE instrumentation consists of a wide variety of equipment, from simple front-end ele-
ments like sensors and actuators, up to complex computer systems that are connected to the
SCADA stations by means of standard fieldbuses. A SCADA run-time database contains
records of all equipment where the data values are stored.

The equipment of the DCS will be geographically distributed in three areas: the main control
room at the surface of the installations, the underground electronics rooms USA15 and the
detector’s cavern, UX15. The SCADA component will be distributed over the two first locations
while the front-end equipment will be placed in USA15, US15 and UX15 as shown in figure
XXX.

11 DCs 111

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Local Area Network

T

=

Operation A % Alarms

SCX1

Subdetector Control Stations (SCS)

Expert

P

Common Subdetector 1 Subdetector 2a

15, US15

usS

UXI15

Sensors
Actuators

WNSAS pug-1uor] | wasAg pug-yoeg

Partition 1 Partition 2 Partition 3 only Partition m

Fieldbus 200m

XXX This figure has to be changed since LCS appears instead of SCSs. XXX

XXX The following has to be summarized...some parts can be moved to the Other FE equipment, i.e. non
ELMB stuff. XXX

UX15:

The Front-End (FE) electronics in UX15 (see figure 1.3) is exposed to radiation and to a strong
magnetic field. The instrumentation in the cavern must be radiation-hard or tolerant to levels of
1-105 Gy per year in the muon subdetector and inner tracker, respectively. In the following, only
the DCS FE equipment located outside of the calorimeters in ATLAS where the dose rate is of
the order of 1 Gy/year will be addressed. In addition, depending on the location, a magnetic
field of up 1.5 T has to be tolerated.

The equipment at this level consists of controllers, which connect to the hardware, either as sep-
arate modules or as microprocessors incorporated in the front-end electronics. Field instrumen-
tation like sensors and actuators will be of various types and it will be tributary to the
requirements for the detector hardware.

This equipment is distributed over the whole volume of the detector with cable distances up to
200 m. The distribution underground is governed by two conflicting constraints. Because of the
radiation level, the magnetic field and the inaccessibility at UX15 during beam time, the equip-
ment should be located in USA15. However, complexity, cost and technical difficulties of
cabling suggest condensing the data in UX15 and transferring only the results to USA15.

Hardware interlocks of components will be implemented wherever needed. This is the case, for
example, for automatic switch off of the front-end electronics of the pixel detector in case of
problems of its cooling system, or for automatic ramp-down of high voltages in presence of
over-currents. The operation of interlocks must be ensured even in the case of power failure and
therefore most of the interlock systems have to be fed by Uninterruptable Power Supplies.
Remote sensing and actuator equipment at the detector level and in the electronics crates and
ancillary equipment, such as safety and general electricity, will be connected directly to one of
the proposed standard buses.

112 11 DCs

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

USA15 and US15:

++++Here we have to mention that the US15 underground electronics cavern and the USA15 are si
and they will hold similar equipment. The only difference is that US15 is not accessible during operation
of the accelerator due to the remaining radiation levels.

The equipment in the detector’s cavern will be interfaced, via fieldbuses, to FE computer equip-
ment located in the underground electronics room USA15, which is accessible during operation,
and which consists of:

Workstations, foreseen for subdetector experts for the supervision of individual partitions,
mainly during commissioning and maintenance periods. Dedicated stations that control the
equipment running real-time operating systems, usually distributed around the installation. It
is foreseen to use a dedicated control computer for each detector. In this context, a controller sta-
tion is not necessarily a single computer but can be clustered if a high channel count or the het-
erogeneity of the equipment leads to this requirement. These systems are called Subdetector
Control Stations (SCS) in figure XXX Figure needs to be changed XXX and they will run the
SCADA software collecting data from the front-end devices in their partition. The SCS allows to
run a partition either independently in standalone mode or integrated as part of the whole
detector.

Depending on the complexity of the subdetectors, it is envisaged to introduce a further group-
ing at the level of the controller stations. Complex Front-end Systems (CFS), which normally do
not run SCADA, are dedicated to specific tasks. The CFS are normally connected to SCS over a
dedicated Local Area Network (LAN). CFS can also be placed in UX15 if they support the hos-
tile environment.

SCX1:

The equipment of this layer will be installed in the main control room in building SCX1 at the
surface of the installations. This area will always be accessible to the personnel. The equipment
will consists of general-purpose workstations, which will be linked to the control layer through
a LAN providing TCP/IP communication.

The workstations will retrieve information from the SCS of the different subsystems underneath
and can be used to interact with them by means of commands or messages. The system wi
only provide a limited set of macroscopic actions to generate the sequence of operations neces-
sary to bring the experiment as a whole to a giving working mode. In addition the system wi
monitor the operation of the sub-systems, generate alarms and provide the high level interlock
logic where necessary.

11.3 Front-End System

The ionizing radiation and strong magnetic field limit the types of technologies that may be
used. Amongst other fieldbuses, CAN bus has been chosen as the standard field bus for this area
as this can operate in a strong magnetic field. The ionizing radiation in the cavern is of the order
of 1Gy per year outside the calorimeter. The “ALTAS Policy on Radiation Tolerant Devices” [ref]
has been formed to give the ATLAS sub-system groups specific rules concerning testing and
qualification of radiation tolerant electronics. Three different radiation types have to be studied
for full qualification, simulated radiation level (SRL) for the Total lonizing Dose (TID), Non-lon-
izing Energy Loss (NIEL) and Single Event Effects (SEE). The simulation results depend upon

11 DCs 113

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

location in the cavern and these values are used with safety factors for qualification of the elec-
tronics.

Justification of CAN: Reliability - Built-in CAN error checking, Determinism - errors indicated
but no acknowledge, Coverage - used for highly distributed systems, Robustness - designed for
harsh environments and has high noise immunity, Galvanic Isolation - essential for long buses,
Operation in Magnetic Field - does not use magnetic sensitive components, Low Power Dissipa-
tion - necessary for remote powering, Openness - is not proprietary and therefore no license fee.

11.3.1 Embedded Local Monitor Board

Add that no commercial solution exists which fu
ELMB has been developed...

Is the requirements outlined above and that is why the

The ELMB contains 64 analog input channels each of 16-bit accuracy. As well as the analog
inputs, there are 8 digital input lines, 8 digital output lines and 8 configurable (either input or
output) digital lines. Other interfaces are available such as a serial port allowing JTAG or other
protocols to be implemented.

The standard software that is pre-loaded into the ELMB allows for communication over a CAN
field bus using the higher level protocol CANopen. The standard functionality gives ‘plug and
play’ usage for the analog inputs and digital inputs and outputs.

The graph below shows the digital current increase due to TID for three ELMBs.

70 }
60 \
ELYB-1 \
__ 50
Z
£
£ 40
£ Ao
© 30 \ p..
20
10
o
0 20 40 60 80 100 120 140 160 180 200

Est. TID (Gy)

XXX This picture has to change. Curve for ELMB_3 has to be removed. The different types of micropro-
cessors will not be mentioned here XXX

No destructive SEE has been seen. No effect has been observed for NIEL. The ELMB has been
tested in a magnetic field and no adverse effect has been observed. The performance, in terms of
accuracy and stability, have also been proven to be sufficient for all applications in ATLAS.

To be summarized...

A motherboard is available that provides standard connectors for the analog and digital inputs
and outputs for the ELMB, as well as a standard connector for the CAN bus. Sockets for adapt-
ers, used to scale the analog inputs to the required range, are provided allowing standard sen-
sors to be used. For non-standard sensors, adapters may be manufactured to a given
specification.

An interlock box has been designed and implemented and provides a hardware interlock with a

114 11 DCs

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

set point hard wired using a resistor of pre-calculated value. The device is a stand alone mod-
ule, though status information can be obtained. The status values may be acquired using the
digital inputs of the ELMB.

There is a DAC prototype available for use with the ELMB. This is a module containing 16 ana-
log output channels, each of 12-bit resolution, where up to four modules may be connected to a
single ELMB (giving a total of 64 analog output channels).

XXX The following has to be reduced. Only ELMB functionality should be described. Mention that the
ELMB has been to consume low current such that it can be powered remotely via the bus. Mention the
node supervision mechanism as well...Then it has to be moved up to the ELMB functionality description
XXX

CANbus Topology
The CAN bus topology used is specific to the needs of each subdetector, where cost, geographical location,
logical grouping, speed and reliability are factors effecting the choices made.

Bus Powering

The ELMB nodes are powered from the control room via the bus as the power supplies cannot be placed in
the cavern. It must be possible to switch the digital power for the bus to allow for recovery of SEE by a
hard (see Bus and Node Supervision). A large diameter cable is used from the control room to the cavern
(to reduce voltage drop) and patch panels in the cavern allow for smaller (more flexible) cabling to be used
over the detector. The smaller cable will be more susceptible to voltage drop and therefore the voltage at
each node must be verified to be correct. This is more a question for the dynamic effect where if all nodes
on the bus draw current at the same time, powering problems may occur.

Bus and Node Supervision

The ELMB uses a monitoring protocol to indicate the node is functioning correctly. If a failure is detected
for an ELMB, a command requesting a soft reset of the node is sent (only to the ELMB that is not
responding). It is possible that the error on the ELMB is within the communication, in which case a hard
reset must be performed. A hard reset involves switching power for the digital part off and on again and is
performed for the bus (and not a specific node). The time taken for this operation, allowing all ELMBs on
the bus to reach operational state once more, must not exceed 10 seconds. If a hard reset does not clear the
fault for an ELMB, no other operation is performed, the unit will be signalled as faulty and would be
replaced when access is possible.

11.3.2 Other standard FE equipment
No explicit mention to OPC should be done at this stage...

Commercial high voltage and low voltage power supplies will be used in the experiment. The
companies who produce these commercial power supplies also supply software (such as OPC
servers that interface between their own communication protocol and the OPC standard) used
to allow control of the power supplies. The CAN bus is often used for connection to the devices
with various, often proprietary, higher level protocols implemented. Other standards include
serial interfaces (various communication protocols) and GPIB.

Programmable Logic Controllers (PLC) compliant with the relevant recommendation given in [21]

Whenever convenient, like in case of large number of field instrumentation channels to be controlled,
VVME-based controllers may be used.

11 DCs 115

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

11.4 The Back-End System

Terms like partitioning or vertical slice should be removed from this section...

The functionality of the BE system is two-fold: It acquires the data from the front-end equip-
ment and it offers supervisory control functions, such as data processing, presenting, storing
and archiving. This enables the handling of commands, messages and alarms.

The BE system will be hierarchically organized to map the natural partitioning of the experi-
ment into subdetectors, systems and subsystem. The BE hierarchy allows for the dynamic split-
ting of the experiment into independent partitions, which can be operated in stand-alone or
integrated modes. The coordination of the different partitions is performed by means of com-
mands and messages. The command flow is downwards, whereas the message exchange take
place in either direction the within the slice. No horizontal communication is foreseen between
different slices or amongst the components of an slice.

In order to provide the required functionality the BE of the DCS will be logically organized in
three levels as shown in figure XXX. The actions on the operator time-scale are performed at the
upper level, while the RT operations are performed at the lower level.

Global Control Stations

The overall control of the detector will be performed by the uppermost level of the BE system,
which consists of the Global Control Stations. These stations are envisaged to provided high
level monitoring and control of all subdetectors and technical infrastructure. The full control of
the detector is provided at only lower levels in the hierarchy. At this level, different services wi
be provided like the DCS Information Service to handle the communication with the external
systems, namely the LHC accelerator, the CERN infrastructure and the Detector Safety System,
or web and database services. Information for these subsystems will be used to build the overall
status of the experiment. Bidirectional data exchange between the DCS and the TDAQ system
will also be managed at this level. No command exchange between the TDAQ and the DCS is
foreseen at this level.

Subdetector Control Stations

The Subdetector Control Stations are placed at the intermediate of the BE hierarchy. There wi
be one SCS per subdetector and an additional SCS to handle the monitoring of the common
infrastructure in ATLAS called Common Infrastructure Controls (CIC). The later will be inter-
faced with the DCS Information service in the layer above. All actions on a given subdetector
provided at the Global Control Stations are also provided at this level. In addition, the SCSs
allow for the full and stand-alone local operation of the subdetector by means of dedicated
graphical interfaces. The SCSs also handle the communication with the services of the layer
above. It is foreseen to have a direct connection from the SCSs to the DCS Information service to
provide the different SCSs with the status of the external system, namely the LHC accelerator,
the Detector Safety system, CERN services and the ATLAS magnet, as well as with the eviro-
mental parameters of the common infrastructure. The SCS handle the co-ordination of all sub-
systems underlying in the layer below and are the responsible for the validation commands
issued by the operator from the global control stations in the layer above or directly from the
TDAQ run control. If low level control is required by the issued actions, e.g. ramp up high volt-
age, these commands can be propagated to the subsystems in the layer below for their execu-
tion. The overall status of the subdetector is assembled (collated???) and pass on to the TDAQ
system via the DAQ-DCS communication software, which is described in section XXX, and to
the control stations in the layer above.

116 11 DCs

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Subsystem Control Stations

The bottommost level of the BE hierarchy is constituted by the Subsystem Control Stations,
which handle the low level monitoring and control of the different systems and services of the
detector. The organization of this level for a given detector could be performed attending to
either geographical or functional criteria. In the former the arrangement follows the natural par-
titioning of the detector in sections, subsection, etc. whereas in the second approach, the organi-
zation is decided as a function of the different services of the subdetectors, e.g. cooling, high-
voltage, etc. This level of the hierarchy is directly interfaced to the FE system. Besides the read-
out and control of the equipment, it also performs calculations and fine calibration of the raw
data from the FE and comparison of the values with preconfigured thresholds for the alarm
handling. The station placed at this level will executed the commands propagated from the
SCSs in the layer above although they can also execute predefined automatic actions if required.

In addition, data and alarm archiving and logging of incidents and commands will be provided
at each of these levels. Remote access to a well-defined set of actions to be performed by the two
upper levels of the BE hierarchy will also be provided subject to proper access authorization.

Finite State Machine

XXX Is this the right place to talk about the operation of the DCS as a FSM? If yes, we have to think of
how to link it with the sections above, i.e. with the description of the functionality of the three layers. XXX

The operation of the different subdetectors will be performed by means of Finite State Machines
(FSM), which will handle the states and transitions of the different parts of the DCS. It is envis-
aged to have a FSM per subdetector. The states of these FSM will be assembled from the status
of the different parts or services of the detector, which are determined by the status of the FE
equipment, and from the status of the different environmental parameters monitored by the
CIC station. As it will be described in chapter XXX (ref to chapter on operation 13 XXX), these
states may be conditioned by the status of the external systems interfaced via the DCS_IS, e.g.
the state of the LHC accelerator. XXX We have to make sure that the DCS_IS is known at this
moment XXX.

The global operation of the BE system will be performed by a single FSM whose states will be
built from the states of the different subdetectors’ FSM, previously configured, and the status of
the external systems. Any transition issued at this level will be propagated to the underlying
subdetectors’ FSM included in the running mode of the experiment.

y— A Global Control Stations

LHC
A ATLAS ‘
CERN
A J“
Magnet DCS_IS |
A »
DSS Subdetector Control Stations

Subsystem Control Stations

Cooling[¥ HV LV

The picture will be moved up. In addition, some modifications are required

11 DCs 117

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003
11.4.1 SCADA

The BE system of the ATLAS DCS will be implemented using a Supervisory Control And Data
Acquisition (SCADA) product. SCADA systems [37] are commercial software packages nor-
mally used for the supervision of industrial installations. They gather information from the
hardware, process the data and present them to the operator. Even though SCADA products are
not tailored to LHC experiment applications, many of them have a flexible and distributed
architecture and, because of their openness, are able to fulfil the demanding requirements of the
ATLAS DCS.

Besides basic functionality like the Human Machine Interface (HMI), alarm handling, archiving,
trending or access control, SCADA products also provide a set of interfaces to hardware, e.g.
CERN recommended fieldbuses and PLCs, and software, e.g. Application Program Interface
(API) to communicate with external applications, or connectivity to external databases via the
Open or Java DataBase Connectivity (OBDC and JDBC respectively) protocols.

SCADA products constitute a standard framework to develop the applications leading to a
homogeneous DCS. Its usage saves development effort reducing the work for the subdetector
teams. In addition, they follow the evolution of the market, protecting against changes of tech-
nology like operating system or processor platforms.

11.4.2 PVSS

A major evaluation exercise of SCADA products [38] was performed at CERN in the frame of
the Joint COntrols Project (JCOP), which concluded with the selection of the PVSS-1l, from the
austrian company ETM, to be used for the implementation of the BE systems of the four LHC
experiments.

PVSS is a device-oriented product where process variables that logically belong together are
combined in hierarchically structured data-points. Device-oriented products adopt many prop-
erties from object-oriented programming languages like inheritance and instantiation. These
features facilitate the partitioning and scalability of the application. The properties and func-
tions of each data point can be parametrized by means of several attributes, e.g. alarm handling,
periphery address, etc.

PVSS provides the interfaces to connect to external databases or systems, like the DAQ system
or LHC accelerator, and the capability to extend the functionality of the product to interface cus-
tom applications or equipment (e.g. availability of driver development toolkit).

It is conceived as distributed systems. The single tasks are performed by special program mod-
ules called managers. The communication among them takes place according to the client-
server principle, using the TCP/IP protocol. The internal communication mechanism of the
product is entirely event-driven. Values and alarms must be notified on change with the possi-
bility to define a dead-band or window range. This characteristic makes PVSS specially appro-
priate for detector control since, systems which poll data values and status at fixed intervals,
present too big an overhead and have too long reaction times resulting in lack of performance.

The managers can be distributed over different platforms, and the communication between
them is internally handled by PVSS-1I. This has been one of the crucial points in the selection of
this product since the DAQ system of the ATLAS experiment is been developed entirely under
Linux, where as the DCS will widely use Windows.

118 11 DCs

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

PVSS allows to split the supervisory software into small application communicating over the
network and it is imposed by the distribution of the DCS equipment in different locations in
ATLAS.

The PVSS architecture is centralized around the RT Event Manager which handles the commu-
nication with all other modules. The different components can be arranged in functional layers
as shown in figure 3.12.

Usar
Interface

Procsssing

Managament

Front-Ened
Interface

The Front-end Interface layer provides the communication with the hardware by means of ded-
icated drivers or communication standards such as OLE for Process Control (OPC). It also pro-
vides drivers for standard fieldbuses, like Profibus and PLC. Neither CANbus nor VME are
supported. The front-end layer also performs data processing to reduce the data volume from
the equipment.

The management layer is responsible for the handling of bi-directional transmission of the mes-
sages between the different managers, as well as for managing RT data, archiving, alarm han-
dling and administration of the user privileges.

The Processing layer contains control applications which are written within the SCADA system
using its own programming language. They can be of two types: the first implements proce-
dures dedicated to monitoring and controlling the detector; the second consists of specialized
programs which extend the SCADA functionality, such as Finite State Machine (FSM) or addi-
tional reporting features.

The user interface layer takes care of external interactions. PVSS-1I provides a powerful
Human-Machine Interface (HMI) easily customizable by means of graphical objects that can be
linked to the different process variables in the application. It includes a WWW server for remote
access to the application. External programs communicate with the Management layer via the
API, allowing external applications to subscribe to any RT and historical data and alarms.

11.4.3 PVSS Framework
To be slightly changed...

Although PVSS-II will be used as the basis of the LHC experiment controls, this has been found
not to be sufficient to develop an homogeneous and coherent system. An engineering frame-

11 DCs 119

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

work on top of PVSS-11 is being developed. It is composed of a set of guidelines, tools and com-
ponents which will be provided to developers of sub-systems in order to:

Reduce to a minimum the work to be performed by subdetectors teams by re-using standard components
rather than duplication.

Design the system architecture in terms of distribution of functionality and network distribution.

Define guidelines for development, alarm handling, control access and partitioning, to facilitate the devel-
opment of specific components coherently in view of its integration in the final, complete system.

Improve performance reliability and robustness.
Cover the lack of functionality of PVVSS-11 like interface to CANbus or VME, integration of FSM.

The ELMB framework component has been developed using SCADA tools, as a framework to
facilitate the usability of the ELMB node to the ATLAS users but also to achieve homogeneity of
the SCADA software in ATLAS. This package creates all infrastructure needed to work with the
ELMB and it also comprises a “top-down” configuration tool, i.e. an utility to create all non-
SCADA components necessary to operate the ELMB.

« The framework also provides panels for configuration and run time of the project.
« Mention that it also contains a top-down configuration tool.

« Easy to interface to the conditions database since the ELMB structure is unique.

11.4.4 Global PVSS based services

All DCS systems from the global level to the local control stations will need some commonly
used services. These applications will be implemented once and may be used at all levels.

Data and alarm displays

There will be a standard set of display panels to show information in a consistent way. The information
shown will contain data (read from the front-end electronics) and alarms (taken from all systems, includ-
ing external systems such as DSS).

Web services

For standard information (such as data and possibly alarms) a web interface will be developed showing
generic information. The information will be shown in a generic form and not be subdetector specific. No
operations will be possible for security reasons.

Histograming interface
Something about the interface to other display tools used in ATLAS
Logging

All actions carried out, whether by an operator or an automatic process, are logged. A system will be
available that will allow the logs to be examined.

120 11 DCs

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

11.5 Integration FE-BE

The PVSS-11 product will be used as SCADA system for the implementation of the supervisor
layer of the ATLAS/DCS. There are several interfaces which allows to connect PVSS-1l based
systems to hardware.

= Dedicated drivers for PVSS-II; PVSS-1I has the drivers for modbus devices, PROFIBUS
and some others. It also contains the API to develop drivers by users.

= PVSS-OPC client; OPC is a wide used industrial standard. All commercial Low and High
voltage systems are supplied with the OPC servers.

« DIM software, which is a communication system for distributed and multi-platform envi-
ronments. DIM provides a network transparent inter-process communication layer devel-
oped at CERN.

The OPC due to the wide spread usage and the big support from industrial has been chosen as
main interface from the SCADA to hardware devices. In turn the ELMB will be widely used in
the implementation of the subdetector front-end system. To connect the ELMB to SCADA the
OPC CANopen server has been develop. Others possibilities will also be used in suitable cases.

11.5.1 OLE for Process Control

The main purpose of this standard is to provide the standard mechanism for communicating to
numerous data sources. The OPC is based on the Microsoft Windows technology. The specifica-
tion of this standard describes the OPC Objects and their interfaces implemented by OPC
server. The architecture and specification of the interface was designed to facilitate clients inter-
facing to remote server. An OPC client can connect to more then one OPC Server, in turn an
OPC Server can serve several OPC clients (Fig 1). All OPC objects, consequently, are accessed
through interfaces. Any client sees only the interfaces.

lient 2
e o, | orc e |

OPC client 3

11 DCs 121

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

11.5.2 CANopen

CANopen is a high level protocol for the CAN-bus communication. This protocol is widespread
as well. CANopen standardizes the types of CAN-bus messages (objects) and defines the sense
of them. It allows to use the same software in order to manage of CAN nodes of different types
and from different manufacturers.

On the market there are a lot of the CANopen servers. But all of them are tailored to their spe-
cific hardware interface cards. This OPC serves provides the CANopen functionality required
by the ELMB.

11.5.3 OPC CANopen server

The OPC CANopen server works as the CANopen master of the bus handling network man-
agement task, node configuration and transmitting data to the OPC client. The OPC CANopen
Server consists of two main parts (Fig ?).

This server executed The component is
the standatd OPC adriverto
interfaces Can Bus Device

Can Bus
Component

OPC Server Can Bus

Sync
Connection point Thead Data taken
Acynchronous Loop

Scan Thread

The General structure of OPC CANopen server. Labels must be standard CAN, CANopen

= The main part is an OPC server itself. It implements all the OPC interfaces and main
loops. Any application interacts with this part through interfaces.

The CANopen OPC server transmit data to a client only on change, which results in a
substantial reduction of data traffic.

= The second part “Can Bus component” is hardware dependent. It interacts with a CAN
bus driver and controls CANopen devices.

It was developed as a COM component. This approach allows changing hardware board
rather easy. In such a case only hardware dependent component should be repro-
grammed and, in turn, the main part should not be re-compiled even. Also It can recovery
the state of CANopen node in case fault due to power cut for example.

Several busses with up to 127 nodes each, in accordance with CANopen protocol, can be oper-
ated by the OPC CANopen server. The system topology in terms networks and nodes per bus is
modelled in start up time in the address space of the OPC CANopen server from a configura-
tion file.

122 11 DCs

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

11.6 Read-out chain

The ATLAS DCS Vertical Slice is defined as the full read-out chain, which ranges from the 1/0
point (sensor or actuator) up to the operator interface comprising all the elements described
above: ELMB, CANopen OPC Server and PVSS-II. The vertical slice also comprises PVSS-I1
framework panels to manage the configuration and the settings and the status of the bus.

PVSS-11 models the system topology in term of CANbus, ELMB and sensor in the internal data-
base by data-points. These data-points are connected to the item in the OPC server to send the
appropriate CANopen message to the bus. In turn, when an ELMB sends a CANopen to the
bus, the OPC server will decode it, set the respective item in its address space and then transmit
the information to a data-point in PVSS. The OPC CANopen server can convert the raw data to
physical units. The SCADA application will carry out the fine calibration, trend and archive the
value. The main function of each element of read-out chain describes below:

ELMB

= Digitize data according ADC settings. The main task of a ELMB is to convert and analog
data to digital form.

« Self ADC calibration. In power up time an ELMB executes the internal ADC calibration.

= Send and received digital data. An ELMB has the input and output digital ports in order
to exchange status and control information.

« Send analog data in microvolt or counts. The ELMB can convert counts to microvolt
based on the ADC settings.

= Send analog data on changed or on closing window limits. In order to reduce bus traffic
and increases the system performance an ELMB can send data only when the value dif-
fers from pervious one on predefined value. The second possibility is that the data will be
sent when the value crosses the predefined limits.
SCADA system:

= Global control of whole DCS system. The SCADA is a base of developing the Global and
Local Detector Control Stations and represent the information to an operator.

= Archive data.
= Visualize and trendling data.

= Fine calibration. There are cases when the calibration claims the information from differ-
ent issues or data have to correct due to time drifting.

= Network supervision. The reliability and robustness of network and fieldbuses should be
supported.
OPC CANopen server:

= Control CAN buses and CANopen node including the recovery procedures after power
cut.

= Send data to the OPC client on change.

= Convert to the physical units and the sensor calibration.

The readout chain constitutes the basis for several control applications of ATLAS subdetectors.
In most cases, the ELMBs will be exposed to radiation, and therefore will be subject to radiation

11 DCs 123

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

effects, which will have to be handled throughout the readout chain, e.g. SEE can be cured by
issuing a hard reset of the modules from PVSS as described in section XXX. In order to under-
stand the behavior of the readout chain in a real environment, two complementary tests were
performed and are described in the following section.

11.6.1 ELMB Full Branch

To investigate the performance and the scalability of the DCS readout chain to the size required
by ATLAS, a full vertical slice (or full branch) consisting of 6 CANbuses having 32 ELMBs each
was assembled.

The aim of this test was to study the behavior of the system with these characteristics to dis-
cover settings required in order to achieve the optimal results and to establish limits of the read-
out chain. These limits define the granularity of the system in terms of number of ELMB per
CANbus and the number of buses per PVSS system. In particular, the following was to be
inspected and investigated:

= Remote powering of the ELMB nodes via the bus. The radiation levels in the detector
cavern impose that the power supplies will have to be placed in the underground
electronics rooms US15 and USA15. Therefore, the power for the nodes will have to be
fed remotely via the CANbus with distances up to 150 m. (XXX In the ELMB section it
must be mentioned that the nodes consume very low current, i.e. they were designed to consume
low current for this purpose XXX)

« Bus loading, which determines the number of nodes per bus. The data traffic on the bus
has to be uniformly distributed over time in order to keep the bus load low under
normal operation. In ATLAS the bus occupancy will be kept below 60% in order to
cope with a higher loads which may arise in case of problems like power cuts. In these
cases, an avalanche of channel information which must be handled by the system.

= Optimization of the work balance amongst the different processing elements in the
readout chain. The functions to be performed by the ELMB, CANopen OPC server and
PVSS are homogeneously distributed to ensure equal load of each of these components
and to avoid bottle-necks.

= Optimization of the system performance by tuning of different software settings such
as update rates for OPC and the readout rate.

= Determination of the overall performance of the systems, which defines the number of
CANbuses with these characteristics per PVSS system, and that will strongly condition
the topology of the different subsystems.

The setup employed in the test, shown in figure 1. A system of 6 CANbuses was operated from
PVSS-II using the CANopen OPC server and a Kvaser CAN interface. The bus lengths were 350
m in all cases, in order to fulfil the ATLAS requirements with a broad margin. Up to 32 ELMB
were connected at the end of each CANbus. The total number of channels in this system was:
12288 analog inputs, 3072 digital outputs, and 1536 digital inputs. In it important to note that
the amount of channels in the set up described here, is of the order of magnitude of some large
applications in ATLAS.

The other end of the CANbuses was connected to a single PC running the SCADA software. All
nodes in a bus were powered from a single power supply connected at the computer’s end of
the CANbus. All messages on the buses were read into PVSS-II for archiving to the local data-
base. In addition, the network traffic was also logged using a CAN analyzer, for off-line com-

124 11 DCs

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

parison between the analyzer and PVSS-1I database contents. This allowed to determine
whether all CAN messages sent to the bus, have been properly read into PVSS-II.

Back-End © v<.mm.:£;)
Supervisory Station TCP/IP (PVSS-II)

m- -« Kvaser CAN card
= ll[l\\ 128 MB, 800 MHz
512 MB, 1.8 GHz PVSS-IT 120
OPC Server |-
(Local Control Station) s
Front-End 16V PS
=) CANbus
CANAnalyzer IS | 350m

120 h CANopen

32 ELMBs

During the test, the readout rate was increase in order to push the system to the limit. When big
bursts of data arrive at PVSS-1I very rapidly, the different messages are internally buffered, first
by the event manager and then by the data base manager until they are sent to the archiving
manager. Two different situations can be distinguished:

= Steady run, where all messages sent by the ELMBs to the bus are stored to the PVSS-II da-
tabase and, in addition, the CPU memory usage remains constant, i.e. no buffering is per-
formed at the PVSS-11 or OPC level.

= The so-called avalanche run, where the fastest possible read-out rate is estimated for a a
short period, typically a few minutes. Under these circumstances, although all messages
are archived to the PVSS database, the ELMB data flow is so high, that messages cannot
be treated in real time and are buffered at the SCADA level therefore, leading to an in-
crease of the memory usage. It is important to note that although long term operation un-
der these conditions would not be possible, this situation can occur, and must be handled
by the system, in case of major problems of the equipment monitored, e.g. power cut,
where the read-out system will have to cope with large bursts of messages for a short in-
terval.

The monitoring of the bus load with a CAN analyzer showed a bus load of about 65% in normal
operational conditions. This result indicates that the number of ELMB per bus at the bus speed
of the test, 125 kbaud, must not exceed 32, if all analog input channels are used.

A readout rate of at least 30 s is required for a steady run in a system of 6 buses with 32 ELMB
nodes each (12288 analog input channels). Under these conditions, the fastest readout rate in
avalanche mode is limited to 8 s for approximately 3 minutes. The examination of the CPU load
showed that in all cases, the results presented are only limited by the CPU work load due to the
PVSS-11 managers as a consequence of the buffering of the CAN messages. These results indi-
cate that the operation of the readout is strongly constrained by the performance of PVSS-
Therefore, this plot can also be understood as an estimate of the time required by PVSS-II to
handle different data volumes.

11 DCs 125

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

11.6.2 Long term operation in radiation
Is this title correct?

The long-term operation of the full readout chain was tested with a number of ELMBs in a radi-
ation environment similar to that expected in the ATLAS cavern, though with a much greater
dose rate. This environment allows the different error recovery procedures implemented at the
different levels of the readout chain, which are required due to radiation effects to be tested. A
CAN bus of greater than 100 m was connected to a PC running the CANopen OPC server and
PVSS-II. The test ran for more than two months, which was equivalent to more than 300 years at
the expected ATLAS dose rate in terms of TID. The CAN controller in the ELMB ensures that
messages are sent correctly to the bus, and will take any necessary action if errors are detected.
Bit flips were seen during the test at the ELMB using special test software, and these are also
handled at the ELMB level. The OPC server ensures all ELMBs on a bus are kept in the opera-
tional state, monitoring the messages on the bus in case of power glitches. At the highest level,
PVSS scripts were utilized to monitor the current consumption for the bus (where increase in
current is an indication of latch-up or damage from long term TID) and to reset ELMBs if com-
munication has been lost. Through this script, the power supply for the bus was controlled
allowing for hard resets to be performed. No user intervention was necessary during the time of
the test.

11.7 Applications

Covers: Common Infrastructure controls (racks, cooling, radiation monitoring, etc.)

The ALTAS DCS system has an ‘extra’ subdetector. This is the Common Infrastructure Controls (CIC)
subdetector which is used to monitor and control all systems(?) that are common to other subdetectors.
The monitoring and control of these systems is not exclusive to a given subdetector, therefore the need for
an overall control station was identified. The CIC will be a full vertical slice of the DCS (including both
BE and FE) and will be capable of stand-alone operation. The systems under the supervision of the CIC
are:

« Rack control
* Cooling

= Radiation Monitoring

e Gas????

Information obtained from these systems is required for the other subdetectors. There will be communica-
tion between the CIC and the other SCSs for this purpose. For example, a subdetector may wish to switch
off high voltage if the cooling is not functioning correctly. This means that software interlocks of the dif-
ferent subdetectors rely on information provided by the CIC.

The LHC rack project [ref: www.cern.ch/ESS/crateProject/] uses standard connection protocols (CAN or
WorldFIP with OPC) to allow control of the sub-racks in the experiment area.

The LHC experiment Gas Control System (LHC GCS) aims at providing LHC experiments with a
unique control system (supervision and process control layers) for the 23 gas systems of the four LHC
experiments. The EP division Gas Working Group has been set up to investigate the feasibility of develop-
ing common gas systems for the many sub-detectors that compose the LHC experiments. The GWG man-
dated the IT-CO group to design and develop the corresponding control systems. The system uses a PLC
with standard interface software.

126 11 DCs

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Muon alignment system, LAr purity control system, CS calibration source of the Tilecal, etc.

equipment is used where the needs of the subdetector are too specific for commercial
the requirements. Although the hardware and software of these systems may be non-
standard, the interface between these systems and the detector control system must be a recognized stan-
dard. These systems often perform complex calculations, though only a sub-set of these results are passed
to the SCADA system. The interface is released using such standards as OPC.

11.8 Connection to DAQ

To be reduced...

In order to grant a coherent functioning of both DCS and the physical data triggering and acqui-
sition the following communication functionality is to be provided [11.6_1, 11.6_2]:

« Trigger and DAQ applications should be capable to access DCS data (detector, accelerator
and environment parameters) that are necessary for both on-line evaluation of run condi-
tions and of-line event reconstruction.

= DAQ data important for the detector control (e.g., like run type and status) should be
available for DCS.

= DAQ (in particular, the DAQ shift operator) should be informed about critical events
within the detector control system.

= DAQ should be capable to issue commands for DCS in order to synchronize the states of
DAQ and DCS as well as to perform spe operation on detector when they are fore-
seen for a certain circumstances and/or run state. The command execution results should
be then delivered back to the application having the command issued.

11.8.1 Context of Communication Subsystem

In accordance of the concept of TDAQ partitioning [11.6_3] the communication functionality
required should be provided for each needing it TDAQ partition independently of others.

The TDAQ Online software package (see Ch.10) provides a series of services for Trigger/DAQ
inter-application communications of the content declared above for DCS communication. They
are the Information Service (IS) allowing to share the run time information (10.3.3.1), Error
Reporting Service (ERS) providing distribution of application messages (10.3.3.2) and the Run
Control package (see 10.1.3.1 and 13.2) running a finite state machine to represent and control/
synchronize the states of TDAQ subsystems' belonging to a partition. These services/sub-
systems will be used as the DAQ-side connection points for the communication with DCS.

The PVSS Il product (11.4.1.2.3) defined as the base of developing the detector controls has no
facilities to communicate with the external application in an active manner. Therefore, the DAQ
- DCS Communication subsystem (DDC) has to be implemented as an active interface capable
to communicate with both the DAQ connection services defined above and a PVSS system. The
tool for the latter is provided by a powerful application program interface (API) of PVSS Il
allowing full direct network access to the PVSS application runtime database.

11 DCs 127

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

In order to provide better performance and reliability and in accordance of DAQ-side connec-
tion points the DDC subsystem is to be implemented as three independent applications with the
following functionality:

= Bi-directional exchange of data like parameters and status values;
= Transmission of DCS messages, like alarms, to DAQ;

= Synchronization DCS with TDAQ run control and providing ability for DAQ to issue
commands on DCS (with feedback).

The context diagrams of these applications are shown in fig. 11.6.1.

|subsciptionfor DCS
mEssages messagest

b) Message transfer context
Fig.11.6.1 DAQ - DCS communication system's context diagram

The Configuration Data on the fig 11.6.1 is to define the TDAQ partition that the application is
to work at, list of data/messages/commands to handle, etc. This information should be defined
in the TDAQ configuration database. The applications configure themselves while starting.
Each of the applications then subscribes in the source side for the data, messages or commands
having been defined by the configuration and transfers that information to the partner system
when arises/changes.

11.8.2 Communication Software (Interface DCS - Trigger/DAQ)

The section describes the DAQ - DCS communication software. The prototype of the DDC pack-
age has been tried in the test beam experiments of 2002 - 2003 and demonstrated satisfactory
and reliable capability of working.

11.8.2.1 Data Transfer Facility (DDC-DT)

The data exchange in both directions is to be implemented via the Information Service of DAQ
Online software. The application keeps the data elements (parameters of the systems) declared
in the DDC-DT configuration being the same in both PVSS application and the Information ser-
vice. This is done on the base of the subscription mechanism available for both sides. The list of
data to be transferred in both of directions is the content of the DDC-DT configuration. The col-
laboration diagram of this use case is drawn in fig.11.6.2. Figure 11.6.3 shows the use case of a
single read DCS data on request of a TDAQ application that is also to be provided by DDC-DT.

128 11 DCs

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

[] []

DCS SCADA DAQ DCS SCADA DAQ
Application Application Application Application
data value subscnbe| publish
1 4 5 data
subscribe 2 data value 3

5

|1; |1; data value |1; J

subscribe 2
DDC-DT data value 3 Is DDC-DT Is
L data value 4 |

a) DCS => DAQ data transfer b) DAQ => DCS data transfer

Figure 11.6.2 DDC-DT collaboration diagrams (update data on change)

DCS SCADA DAQ
Application Application
data value request
4 2
get data 5
datp Value
™ subscribe for requests 1
DDC-DT request 3 I
data value 6

Figure 11.6.3 DDC-DT collaboration diagram (get data on request)

In figures above DDC-DT is the application, which always issues the first message either for
DCS (PVSS) or for IS. It is assumed, therefore, that two systems to communicate are already
working when DDC-DT starts. However, the situation when a system is not yet ready (as well
as stop/restart of any of them during the run) is handled also properly with issuing an error
message and waiting the readiness.

The DDC-DT application is to be implemented as a PVSS APl manager [11.6_4], which inte-
grates the application program interface of DAQ information service to set and get data to/
from there.

11.8.2.2 Message Transfer Facility (DDC-MT)

The DCS message transferring to DAQ is to be implemented via the Error Reporting System of
DAQ. The collaboration diagram of the application is drawn in fig.11.6.4.

11 DCs 129

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

SCADA DAQ
Database Application
subscribe
2 message 1
subscribe 3
5
h message
DDC-MT message 4 ERS

Figure 11.6.2 DDC-MT collaboration diagram.

The DDC-MT configuration defines the list of DCS alarms and text variables to be delivered for
ERS.

In fig.11.6.4 DDC-MT is the subsystem, which always issues the first message (subscription) for
DCS and, while a DCS message has came, sends it to the ERS server of a corresponding TDAQ
partition. It is assumed, therefore, that typically both DCS' PVSS application and ERS are
already working when DDC-MT starts. If however PVSS system is not running, DDC-MT issues
a message about the connection error and waits the readiness of PVSS application. If ERS server
is not running when DDC-MT has started a console error message is to be issued. The DCS mes-
sages that have been issued earlier than ERS server starts will not be delivered for DAQ. A
TDAQ application will receive, surely, only the messages coming to the ERS server after that
application has subscribed for them.

The DDC-MT application is to be implemented as a PVSS APl manager [11.6_4], that integrates
the application program interface of DAQ error reporting service to distribute messages.

11.8.2.3 Command Transfer Facility (DDC-CT)

The DDC-CT subsystem is implemented as a dedicated run controller (RC) to be included as a
leaf into a DAQ partition run control tree (see 13.2). The DDC-CT run controller, like any other
run controller, is capable to execute standard commands causing its transitions as defined by
the finite state machine. The collaboration diagram of this use case is drawn in fig.11.6.5a.

130 11 DCs

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003
al "
DCS SCADA DAQ Partition
Application Run Control

rc_comman

ddc_result 4

3

]

2
dde_command

DDC-CT

a) Handling run control command

DCS SCADA DAQ
Application Application
nt-command
ddc_result 4) 7
5 ddc_command result
1
subscribe for command
3 command RunCtrl
DDC-CT
resut 6 IS server

b) Handling non-transition commands
Fig. 11.6.5 DDC-CT collaboration diagram

By DAQ Run Control we mean the part of the run control tree of a DAQ partition above the
DDC-CT controller (parent tree).

The content of a ddc_command and its execution is the responsibility of DCS PVSS application.
Mapping of the run control transitions onto certain set of commands on DCS is to be done
according to DDC-CT configuration. That configuration defines the list of commands available
for issuing for a certain PVSS system as well as the correspondence between the ddc_command
set and the standard set of the run control commands (rc_command on fig.11.6.5a).

Another way of operating by DCS from the DAQ side is to be implemented as so-called “non-
transition” commands (nt-commands). The latter term emphasizes that those commands do not
cause any finite state machine transition, though being executed by the same DDC-CT applica-
tion. An nt-command may be issued either by the parent run controller or by any other TDAQ
application. The collaboration diagram for the use case of non-transition commands is pre-
sented in fig.11.6.5b.

It is assumed that normally the DCS application has been started earlier than all the others men-
tioned in fig.11.6.5. If a command has been issued while DCS is not yet running, an error
response code will be returned for the command sender.

The DDC-CT application is to be implemented as a PVSS API manager [11.6_4], who inherits

the rc_interface class of TDAQ run controllers and integrates the application program interface
of DAQ information service to receive non-transition commands.

11 DCs 131

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

11.9 External Systems

To be summarized...

The term External Systems designates systems having their own control system with which the
DCS has to interact. We can distinguish two main external systems: the CERN technical infra-
structure and the LHC accelerator. The former consists of a number of subsystems like cooling
and ventilation, electricity distribution, radiation monitoring, etc. The Detector Safety System
(DSS) and the Magnet Control System are also considered part of the technical infrastructure.
All these external systems must be concurrent into the general DCS. Although these systems are
designed to react in case of problems, early indications of their status must be notified to the
DCS since they may have consequences onto the detector and automatic corrective actions,
driven by the DCS, may be required. The DCS will reflect also the states of all these systems
and, in many cases, will act as their user interface.

The connection will support bidirectional information exchange and, in some cases, also the
sending and receiving of commands. This interface will be unique for the 4 LHC experiments
and it will be developed in the framework of the JCOP.

11.9.1 Technical Services
XXX This section can be moved to the Applications since these are not really external systems XXX

The technical services around the ATLAS detector include cryogenics and conventional cooling,
ventilation, gas system, electricity, radiation monitoring, low and high voltage power supplies.
The DCS will also have access to the control and status of infrastructure including AC mains, air
conditioning etc. These services will monitor the environment to guarantee the safety of the per-
sonnel and equipment and will enable the different subdetectors of the experiment to function
within their required operating conditions. Some of the systems will need feedback from the
subdetector to operate. This is the case for the gas system and cooling, where part of their
equipment consist of external stand-alone PLC or commercial /0 modules, whereas some
information come from the detectors themselves. Therefore, slow closed-loops maybe needed
between the DCS and this type of systems.

11.9.2 Environmental Infrastructure

Environmental parameters including humidity and atmospheric pressure in the cavern and at
surface, the composition of the air in cavern (O2 levels etc.) will be monitored by the overall
DCS and made available to the detectors. The temperature, for example, ranges from 4.5 K for
the super-conducting magnets, to 88 K for the liquid argon calorimeters, to 253 K for the pixel
and silicon parts of the inner detector to 293 K for the TRT, tile calorimeter and muon chambers.
The state of these systems and early indications of problems must be presented to the operator.
The DCS will handle, present and log this data. Automatic corrective actions must be taken by
the DCS if required. Moreover, after the temporary stop of one of these systems, the DCS has to
prepare the detector for the restart.

Radiation monitoring is an area where information from many sources will be used. The subde-
tectors themselves are sensitive radiation probes, but also dedicated sensors and information
from the monitoring of the environment will be used.

132 11 DCs

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

11.9.3 Detector Safety System

As previously mentioned, the DCS is not responsible for the security of the personal nor for the ultimate
safety of the equipment. The former is responsibility of the LHC-wide hazard detection systems, which
will alert the fire brigade in case of severe problems such as gas leaks or fire, whereas the latter has to be
guaranteed by hardware interlocks and stand-alone PLC and it is responsibility of the Detector Safety
System. Although the information exchange between the DCS and the DSS must be bi-directional,
actions must go only in one direction. The DCS must not disturb the operation of the safety system. How-
ever, warnings about problems detected by the safety system must be notified to the DCSin order to take
corrective actions or to shut down the problematic part of the detector. Control accesswill aso be handled
by the CERN services and it will be needed at the DCS side.

11.9.4 Magnet system

The magnet system, described in the first chapter, represents one third of the total budget of the
ATLAS detector. Although due to its critical requirements [10] and complication, a dedicated
PLC-based control system will be implemented and the operator will not need direct control, a
detailed online status and knowledge of all important parameters of the magnets, is essential
for the operation of the detector and for the subsequent physics analysis. This dedicated system
will supervise and control the cryogenics, the cooling system, the power supplies and the
instrumentation of the magnet.

The toroid coil system has a 21 kA power supply and is equipped with control systems for fast
and slow energy dumps. The central solenoid is energized by an 8 kA power supply. An ade-
quate and proven quench protection system has been designed to safely dissipate the stored
energies without overheating the coil windings.

The central solenoid is cooled by a refrigerator. In addition, the barrel toroid and the end-cap
toroid, have cold helium pumps to guarantee appropriate cooling by a forced helium flow at 4.5
K. The cooling power is supplied by a central refrigeration plant located in the side cavern and
the services are distributed among the four magnets.

A fieldbus will connect all instrumentation to the main control centre in the USA15 cavern. The
magnet supervisory control system could be implemented using some standard tools of the
general DCS, thus SCADA and general-purpose I/0 modules. This would facilitate the integra-
tion of this subsystem within the overall DCS.

11.9.5 LHC

An robust interface between the experiment and the accelerator must be provided. Instanta-
neous beam parameters like the different types of background, beam position, individual bunch
luminosities, observed in the detector must be transferred from the experiment to the accelera-
tor for consequent tuning of the beam.

The experiment will also give all information on its status such as status of its magnets, in par-
ticular, the solenoid which acts directly on the beams, status of sensitive equipment like high
voltage on the sub-detectors and other status signals as well as global status signals such as the
operation state of the detector, setting up, etc. The DCS has to make sure that the detector is in
an appropriate state (e.g. voltage settings) before LHC is allowed to inject particles.

11 DCs 133

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

ATLAS may need the possibility to request actions like a fast beam dump should the back-
grounds become dangerous for the subdetectors or injection inhibit. This important feature has
to be implemented by a fast interlock system.

On the other hand, machine parameters like status signals for setting up, shut-down, controlled
access, stable beams, beam cleaning must be transferred from the accelerator to the experiment.
The machine should also provide information on the beam like emittance, focusing parameters,
energy, number of particles per bunch, a horizontal and vertical profile, needed for offline phys-
ics analysis. Information on the vacuum con ns in the vicinity of and in the experimental
straight section and po n of the collimator are also of interest to the experiment.

The LHC has dedicated instrumentation for the comprehensive measurement of all these
parameters. The subset of operational parameters of the accelerator, relevant to the operation of
the detector or to the subsequent physics analyses have to be delivered to the DCS and must be
logged.

Although the exchange of many of these parameters is only needed during data-taking, a subset
of this information, like the integrated radiation doses in the different parts of the detector mea-
sured by the DCS, has to be known to the LHC at all times. Therefore, this communication is
required regardless the state of ATLAS. This is one main reason why this communication will
be handled by the DCS on the ATLAS side and not by the DAQ system.

Similar functionality is currently required to interface the CERN Super Proton Synchrotron
(SPS) during testbeam activities and commissioning of the LHC experiments. The solution cur-
rently adopted is presented in chapter 5.

More work is required concerning the interaction of accelerator and the experiment during
operation which will have to be addressed in the coming years. All information exchange
should be done with the same mechanism as used for the communication with the other exter-
nal systems.

The CERN Services, LHC and Detector Safety System will be interfaced by means of the Data
Interchange protocol to be provided by JCOP.

11.10 References

11-1 H.J. Burckhart et al., “Vertical Slice of the ATLAS Detector Control System”,
submitted to 7th Workshop on Electronics for LHC Experiments, September 2001,
Stockholm (Sweden).

11-2 F. Varela Rodriguez et al., “ELMB Full Branch Test: Behaviour and Performance”,
ATLAS DCS Internal Working Note 13, October 2001.
11-3 F. Varela Rodriguez. “The Detector Control System of the ATLAS experiment: An

application to the calibration of the modules of the Tile Hadron Calorimeter”, PhD.
Thesis, CERN-THESIS-2002-035, April 2002.

11-4 http://www.kvaser.com

11-5 V. Filimonoy, “Description of the CANopen OPC server v2.5”, http://
atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/DCS/ELMB/DOC/
OPCCOUserGuide.pdf

11-6 References from Connection to DAQ:

134 11 DCs

ATLAS Technical Design Report

High-Level Triggers, DAQ and DCS 30 June 2003

11-7 H.Burckhart, M.Caprini, R.Jones “Connection DCS - DAQ in ATLAS”, ATLAS DCS
IWNS8, Nov 1999,

11-8 http://atlasinfo.cern.ch/ATLAS/GROUPS/DAQTRIG/DCS/dcs_daq_0.6.pdf.

11-9 R.Hart, V.Khomoutnikov “ATLAS DAQ - DCS Communication Software. User
Requirements Document”, Nov 2000,

11-10 http://atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/DCS/DDC/ddc_urd.pdf

11-11 <TDAQ Partitioning document> Probably, made already earlier at the document

11-12 <Reference to PVSS> Probably, made already earlier at the document

11-13

11 DCs 135

ATLAS

High-Level Triggers, DAQ and DCS

Technical Design Report
30 June 2003

136

11 DCs

ATLAS
High-Level Triggers, DAQ and DCS

Technical Design Report
30 June 2003

12 Interfaces

12.1 External to TDAQ

12.1.1 LHC machine

12.1.2 Detectors

12.1.3 Off-line

12.2 Internal to TDAQ

12.21 LVL1

1222 ..

12.3 References

12-1
12-2

12

Interfaces

137

ATLAS

High-Level Triggers, DAQ and DCS

Technical Design Report
30 June 2003

138

12 Interfaces

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

13 Experiment control
This chapter has been positioned after all other chapters in this part because it relies on information pre-

sented in the previous chapters.

+This chapter will describe how the different systems and building blocks of the overall controls architec-
ture presented in chapter 5 and described in chapters 10 and 11 are used to provide the overall controls
functionality required by the experiment in the following scenarios:

« Physics data-taking,
= Calibrations, where only DAQ or DCS are involved or where both systems are required.

* Operations outside a run.
+It is assumed that these scenarios have been introduced in chapter 3.

+The chapter will contain a description of the functionality required by the different systems, namely DF,
HLT and the detectors.

+The operation of the Online Software System State machine and the DCS as Finite State Machines and
their synchronisation will be addressed .

+The overall control system will provide the flexibility required to operate the subdetectors both in stand-
alone mode and in an integrated mode for concurrent data taking. Scenarios will be presented.

+The overall coordination of the systems above and the LHC accelerator for Physics data-taking will be
described.

+For Physics data taking the TDAQ control will act as the master while the DCS will act as a slave.

+The DCS has to operate continuously with no interruption.

+Special emphasis will be placed on the connection DAQ-DCS in the different scenarii mentioned above,
where the connection points and the flow of data, messages and commands between both systems will be
described.

+Some use cases on error handling in the different scenarii will be sketched.

13.1 Introduction
This chapter brings all the control elements together to show the overall control strategy and

describe the mechanisms involved. The concepts presented here will have already been intro-
duced in Chapter 5, "Architecture”.

13.2 Control coordination

Explain the three different finite state machines present in the system, namely online, DCS, and
machine, and their synchronisation.

13 Experiment control 139

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

13.3 Sub-system control

The information presented here might already be presented elsewhere in which case this section is not
needed.

online software concepts
detector control
HLT farm supervision

DF control

13.4 Control scenarios

Control scenarios of:
= different types of calibration.
= physics run.

= operation outside a run.

13.5 References

140 13 Experiment control

Part 3

System Performance

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

14 Physics selection and HLT performance

14.1 Introduction

Recall the strategy (as in Section 4) and the inclusive approach (more details later on non-inclu-
sive selections).

Explain the use of selection algorithms at different levels and the selection sequence

Highlight the use of updated detector geometry (also in start-up phase, i.e. staged, implementa-
tion) and (wherever possible!) the use of realistic data and communication schemes, the use of
fully simulated data with proper pile-up

2x1033 cm~2s-1 (we need a FM variable here!) and L = 1.0 x 1034 cm—2s-1 different approaches

Find a clever way to explain how we will do bricolage when we cannot use the full-fledged
schema to get byte stream, decode, apply HLT algorithms, derive features, take decision.

Don’t do like CMS (because we can) and do not explain all the things that we already said in
Physics TDR and HLT TP, but only reference them.

14.2 Common tools for selection

Describe the tools (algorithms) used at the different levels, with a focus on the LVL2 detector re-
construction (e.g. Calorimeter clustering, 1D tracking, etc).

Highlight the approach of the Algorithm Task Force, the use of common tools for different selec-
tions. Do not forget that EF is “inherited” from off-line and explain how much of the full analy-
sis chain is retained here.

Link also with description of PESA-SW, Steering, Data Access, etc.

14.3 Signatures, rates and efficiencies

Derive from Trigger Menus (of Section 4) list of representative physics signatures (a la TP).

14.3.1 e/lgamma

Emphasis on this selection: most of explanations will be here.

14.3.2 Muon selection

Differences wrt TP, low-p signatures (see later for B), barrel approach, end-cap ?

14 Physics selection and HLT performance 143

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

14.3.3 Tauljets/Eqmiss

Highlight major discovery channels, for taus probably start using bricolage

14.3.4 b-tagging

Define on-line strategy for this, explain why we think we need it, discuss implications for jets
thresholds (and hence rates)

14.3.5 B-physics

Agree on ATLAS policy. Explain strategy, start with di-muons selection, in with other low-py
signatures with decreasing instantaneous luminosity (some of this probably already in Section
4)

For each of the above, go through the list of signatures and derive numbers for rates and effi-
ciencies (both HLT wrt LVL1 and between LVL2 and EF steps)

See also recent Saul’'s comments to include test-bed results in performance evaluation

14.4 Event rates and size to off-line

Define present ideas about data compression and reduction, zero suppression for LAr (and
TRT?): this might be probably be elsewhere as well. Differences between zeros at the EF and
loss-less data compression in the ROSes.

Global table on rates for initial and high luminosity, implication for off-line reconstruction (cost-
ing, later)

14.5 Start-up scenario
Should be here? Picture a global approach on how we are going to handle, at the selection level,

the first year of running, assuming a certain machine scenario. It is probably very appealing for
LHCC

14.6 References

14-1 ATLAS detector and physics performance technical design report, CERN-LHCC/99-14/15
(1999)
144 14 Physics selection and HLT performance

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

15 Overall system performance and validation

15.1 Introduction

- Definition of validation of rate capability, its context and scope.

- Summary of validation process

15.2 Integrated Prototypes

Description of the prototypes:
= HLT/PESA prototype

= integrated 10% system

15.2.1 System performance of event selection

NOTE: This section will (necessarily) be completed at a later time. The work described here is ongoing,
and in some cases, not even started. The following sub-sections may be re-shuffled or modified to accom-
modate the evolving tests.

The High Level Trigger will select and classify events based on software largely developed in
the offline environment. This approach minimizes duplication of effort and ensures consistency
between the offline and the online event selections. However, given the strict performance re-
quirements of a real-time online environment, it is essential to evaluate the performance of the
HLT event selection software (“PESA software”) in a realistic trigger environment.

The resource utilization characteristics of the PESA software are an important input to the mod-
els that predict overall system size and cost. For this reason, a prototyping program was devel-
oped to perform dedicated system performance measurements of the PESA software in a
testbed environement. The following sections summarize the outcome of this measurement pro-
gram.

Here need to be more specific as to what testbeds we are referring to. Differentiate with 10% testbed.
Stress: limited scope to PESA sw and dataflow and HLT components necessary to run it.

15.2.1.1 Measurement and validation strategy

Here we need to describe the approach taken in the testbed work: First perform functional integration and
then performance measurements. Refer to backup documents (to come).

Address robustness requirements (runs more frequently in online that in offline)?

Short description of testbeds used:
- LVL2

15 Overall system performance and validation 145

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

- EF
= integrated LVL2-EF

15.2.1.2 Event selection at LVL2

Describe software components used in event selection:

= PESA Steering Controller

Steering, COnfiguration. Trigger Menus
Trigger Algorithms: T2Calo, SiTree/IDSCAN

.

= Data unpacking: BS converters for LAr,Tile,Si/pixels

Describe hardware components in testbed:
 L2PU
= ROS emulator

= L2SV

Here describe system performance results for various components in different configurations, e.g., PSC
overhead, framework overhead, algorithm usage of CPU resources, number of threads, etc. Only a few re-
sults shown in a table. The rest will be in a backup document.

Also give a sense of what sort of optimization can still be done in the software/strategy so that per-
frormance can be brought to an acceptable level.

15.2.1.3 Event selection at the Event Filter

Same approach as LVL2 above.

The Event Filter will select and classify events using reconstruction algorithms developed by
the offline community.

Include results (TABLE).

Comparison with stand-alone offline measurements
15.2.1.4 Testing of HLT

Here will try to treat LVL2/EF as one unit. Show successful integration of LVL2 and EF in a testbed.
Briefly talk about benefits of LVL2-seeded Event filter and the use of the pROS.

15.2.2 The 10% prototype

Description of the integrated 10% system

146 15 Overall system performance and validation

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

15.2.2.1 Laboratory setup
- machines, networks, OS platform(s), hardware emulators (if any)

- refer to architecture and components chapters for details

15.2.2.2 Description of the measurements
- scope of the measurement (what parameter(s) of Chapter 2, "Parameters" are we testing)

- parameter space covered

15.2.2.3 Results
- prototype results

- comparison with required performance

15.3 Functional tests and testbeam

During prototyping phases, often the performance of a system is put in foreground with respect
to its stability and maintainability. Functional user requirements have in this phase of develop-
ment a lower priority than the achievement of the performance requirements. This is to some
extend true also for the TDAQ system, which has focussed its efforts in the area of trigger rates,
speed of data acquisition, etc. Nevertheless we have decided to also stress the global functional-
ity of the TDAQ system, by carrying out a series of functional tests and exposing the system to
non expert users at the ATLAS test beam sites.

Three different aspects of the functionality have been covered:

« a)Dynamic system configuration

= b)Stability in cycling through TDAQ finite states

« c)Operational monitoring and system recovery in case of errors
All these aspects have first been tested in dedicated laboratory setups and then verified in a "re-
al" environment, during test beam data taking.

= a)A TDAQ system has to be easily reconfigurable in order to accommodate the substitu-
tion of hardware, the change of trigger conditions, etc. This means that on one side all the
tools to keep the configuration parameters in a database have to be developed and on the
other side that the Run Control, DataFlow and Trigger software has to be designed to be
dynamically reconfigurable.

To verify the flexibility of our system the following tests have been carried out:
= -substitution of a data taking machine
= - exclusion and reinsertion of a Run Control branch

= -change of communication protocol between the ROS and the L2/EF (= change of Data
Collection protocol)

15 Overall system performance and validation 147

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

= -change of run parameters.

More detailed test description and measurement results to be included here.

= b)When performing a series of measurements with different configuration options, the
TDARQ system must be capable of cycling through its finite states stably. This functional
requirement has been checked via automated scripts cycling repeatedly through the finite
state machine.

More detailed test description and measurement results to be included here.

= ¢)In a distributed system such as the TDAQ it is important to constantly monitor the op-
eration of the system. Furthermore, the fault tolerance is a fundamental aspect of its func-
tionality. In this area several improvements are still to be achieved, but we decided to
carry out a series of tests in order to assess the present performance of the system in case
of errors. In particular we tried to test the fault tolerance of the system in the presence of a
fatal error which prevents on or more data taking computers to continue their working.

= V\rification that all applications provide regular information on their status
= -Failure of a SFO
« -Failure of a EF subfarm (distributor or collector)

« -Failure of a EF processing task

-Failure of a SFI

-Failure of a L2PU

= -Failure of a DFM

= -Failure of a L2SV
-Failure of the Rol builder
-Failure of aROS

-Failure of a ROBIN

= -Failure of aROL

-failure of online sw servers (is, mrs, ipc,)
More detailed test description and measurement results to be included here.

The results of the various tests will determine the summary and conclusions of this section. It is prema-
ture to indicate them now.

15.4 Model analysis of mechanism and avoidance of message loss

The availability of network connections and switches with sufficient bandwidth and of a suffi-
cient amount of computing resources in the DAQ and HLT systems does not guarantee a satis-
factory system performance. The reason is that congestion in switches may lead to message loss,
if not enough buffer space is available. For gaining insight in how likely message loss is and

148 15 Overall system performance and validation

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

how it can be avoided a simplified model of the candidate architecture is studied in this section.
Choices for the model parameters have been made on the basis of the parameter values present-
ed in Chapter 2, "Parameters".

Simplified model properties:
= Ethernet network technology

= 800 dual ROBIns with one Fast Ethernet connection, each ROBIn outputting 1.5 kByte
event fragments (i.e. 1 Ethernet frame per event fragment) via one network connection

= 2 kHz Event Building rate, 0.5 kHz LVL2 Rol rate per ROBIn (total bandwidth required
for data: 5 kHz times 1.5 kByte = 7.5 MByte/s, about 63% of the max. bandwidth of the
network link

= “Edge switches”: 48 Fast Ethernet ports connected to 48 dual ROBIns, 4 Gigabit uplinks,
three links to EB switch, 1 link to LVL2 switch, fragment size on an uplink to EB switch is
144 kByte (96 frames) @ 2/3 kHz, fragment size on an uplink to the LVL2 switch is 6 kByte
@ 12 kHz (assuming that on average 4 ROBIns output data for a single Rol),

« Total (rounded) number of uplinks: 4 = 800 / 48 = 68, 51 to EB switch (per link: 96 MByte/
s)and 17 to LVL2 switch (per link 72 MByte/s),

= The LVL2 switch is a Gigabit Ethernet switch with 17 input and 17 output ports, the EB
switch consists of three switches with 17 input and 17 output ports each,

= 102 L2PUs, input per processor 17 * 72 / 102 = 12 MByte/s, corresponding to 2000 frag-
ments of 6 kByte per second, 6 LVL2 processors connected to 1 up link via switch,

« 102 SFls, input and output 51 * 96 / 102 = 48 MByte/s. With an event size of 2.4 MByte the
event rate per SFl is 20 Hz, 10 EF processors connected via switch to one SFl, input rate
per EF processor: 4.8 MByte/s, event rate = 2 Hz,

= The switches are assumed to have infinite internal bandwidth and only output buffers,
frames are lost if no slot is available in the output buffer. In total 160 slots are available in
each output buffer.

If on all input ports of an“edge” switch, connected to the ROBIns, fragments arrive for the same
destination at the same time and the output buffer is empty, fragment loss does not occur as
there are more than 96 slots available for storage of the frames. Now all fragments for LVL2
have to go to a single LVL2 up link. If it is assumed that all ROBIns send their LVL2 date at the
same time, then it takes 48 * 3 / 125 = 1.15 ms to output all data (raw transfer speed of Gigabit
Ethernet assumed to be 125 MByte/s). So if the instantaneous output rate of LVL2 fragments
per ROBIn is limited to 0.87 kHz no congestion causing message loss should occur. For the up-
links to the EB switch the same type of reasoning can be applied: per link the instantaneous rate
of each ROBIn should be limited to 0.87 kHz (i.e. the maximum event building rate would be 3 *
0.87 kHz = 2.68 kHz). The maximum required bandwidth per Fast Ethernet link would be 10.66
MByte/s = 85.3% of the available 12.5 MByte/s

For the LVL2 switch 17 input links could deliver 17 frames in the same time interval for the
same destination. At the end of the time interval still 16 frames will be buffered, as only one of
the frames can be output and as all links have the same bandwidth. Although unlikely for the
LVL2 trigger, for each input link 96 frames for the same destination could be sent immediately
after each other via a single link. Therefore, after sending out the next frame 17 new frames
could have been received and stored, etc... .This build-up of buffered frames will lead to a buffer
overrun and therefore to discarding of frames. It is therefore necessary to steer the traffic such

15 Overall system performance and validation 149

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

that this situation will not or is unlikely to occur. A strategy which seems obvious is to assign
successive events to L2PUs receiving data via different links from the LVL2 switch. However,
this strategy in combination with the variability in algorithm execution times and the probabil-
istic nature of the data request patterns could have an undesirable impact on the load balancing
in the LVL2 processor system. Therefore another measure is necessary, which consists of requir-
ing that the number of outstanding requests is always smaller than or equal to a certain maxi-
mum. In the simplified model discussed here there are 6 L2PUs sharing a link from the LVL2
switch. With a maximum switch output buffer capacity of 160 frames the maximum would be
about 25 outstanding requests per L2PU. However, the requests generated by the L2PUs also
can cause buffer overflows in the central LVL2 switch. Although unlikely, all L2PUs could be
sending their maximum of 25 outstanding requests to the same uplink at the same time. This
will certainly result in message loss and can be prevented by either limiting the maximum
number of outstanding requests for each uplink and for each L2PU to 1 or by limiting the in-
stantaneous output rate per L2PU so that the amount of requests queued per uplink is always
less than 160. If the size of a request message is assumed to be 64 Bytes and the bandwidth of an
uplink is 125 MByte/s (Gigabit Ethernet) a request rate of 20 MHz per uplink can be supported.
So if the instantaneous request rate per L2PU can be limited to 20 kHz the problem loss of re-
quest messages can be avoided. However, there is a caveat: all requests arriving in an "edge
switch" could in principle go to the same destination, which is connected via a Fast Ethernet
link. To be completely safe the 20 kHz has to be reduced to a maximum instantaneous rate less
than 2 kHz per destination (a dual ROBIn). Less than 2 kHz, because also requests from the SFls
and deletes have to go through the same links between "edge switches" and ROBIns. Here it is
assumed that the maximum instantaneous rate is1.5 kHz. So a L2PU could be required to out-
put requests with an interval of 50 microseconds at minimum, per destination (dual ROBIn) the
interval should be about 600 microseconds at minimum to be completely safe.

For the EB switches the situation is somewhat different from the LVL2 switch, as there is only
one data request phase, and as the data request pattern is fixed. Therefore assigning successive
events to SFIs receiving data from different links of the EB switches can be expected to help
with avoiding congestion. The data request pattern generated by a SFI can also be used to con-
trol the traffic patterns. The most straightforward approach seems to consist again of limiting
the maximum number of outstanding requests. A limit of 80 is suggested by the model used in
this section, in the same way as for the L2PUs (in the model used there are two SFls sharing a
single Gigabit Ethernet link of one of the central EB switches). As a request is shorter than an
event fragment and Gigabit Ethernet is bi-directional with equal bandwidth for both directions
it can be expected that after a startup phase requests and data fragments will be transferred
with about the same frequency. Multi-casting of requests to the ROBIns is not feasible due to the
maximum of 80 outstanding requests (addressing groups smaller than 80 ROBIns in a single
multi-cast may be a possibility but it has to be taken into account that a too large number of si-
multaneously active multi-casts can also result in message loss). The requests generated by the
SFls also can cause buffer overflows in the central EB switches. The maximum instantaneous re-
quest rate per SFI should be 2 million / 34 = about 60 kHz (there are three EB switches, each
with 34 SFIs and each connecting to 17 uplinks). With an event building rate of 2 kHz the rate of
events per SFl would be about 20 Hz, so the average request rate is 20 times 1600 = 32 kHz, i.e.
lower than the maximum of 60 kHz. As with the L2PUs, there will be again a problem when all
requests go to the same dual ROBIn. For the requests from the L2PUs we have already reserved
75% of the capacity of the links. For three uplinks (to the EB switches) per "edge switch" there-
fore the instantaneous request rate of 34 SFls (and for deletes, these are ignored for this discus-
sion) per destination should not be more than can be transferred with a bandwidth of about 8%
of the capacity of a Fast Ethernet link. This corresponds to a request rate of 0.08 * 12.5 / 64 MHz
=16 kHz, i.e. about 0.5 kHz per SFI. So the interval between successive requests per destination

150 15 Overall system performance and validation

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

should be larger than 2 ms. If requests are always sent out in the same order and with a maxi-
mum rate of 60 kHz the maximum instantaneous rate for a given destination is 2 times 60,000 /
800 = 150 Hz (dual ROBIns and assuming two requests per dual ROBIn), well below the maxi-
mum of 500 Hz (but the two requests for each dual ROBIn must not be sent within 2 ms).

Delete commands, not taken into account so far, may be multi-casted to the ROBIns when this
type of traffic does not lead to responses from the ROBIns: the delete commands will not cause
congestion, as they are fanned out, but responses sent out at the same time definitely will lead
to buffer overflows as they all will be sent to the same destination.

Conclusion: congestion in the switches of the candidate architecture can be avoided by limiting
the maximum instantaneous fragment output rates of the ROBIns and by limiting the maxi-
mum number of outstanding requests in the LVL2 processors and in the SFls. Values for these
maxima need to be determined from the switch configuration, the switch properties and aver-
age frame rates in the system, in the same way as done in this section for the simplified model.
However, it is not clear that limiting the instantaneous rates is technically possible. Intelligent
event assignment schemes may be possible and could prove to be attractive.

15.5 Computer model

Discrete event simulation

Object oriented model of system, most objects represent hardware, software or data items

Two tools: at2sim, based on Ptolemy, and Simdag, dedicated C++ program

Testbed models and models of full system.

For the full system model the same LVL1 trigger menus as for paper model are used to
generate an appropriate number and type of Rols for each event. As in the paper model,
the eta and phi coordinates of the Rols are chosen at random from the possible eta, phi co-
ordinates (as defined by the LVL1 trigger). The mapping of the detector on the ROBIns is
the same as for the paper model. Average message rates and volumes and total CPU pow-
er utilized as obtained from the paper and the computer model of the full system there-
fore should be equal within the statistical errors.

= Component models described in detail in back-up document

15.5.1 Result of testbed model
LVL2 Subsystem test, EF subsystem test, Minimal DataFlow test, larger setups ..

Type of results: model and experimental results for throughput, maximum message rate, laten-
cy ...

15 Overall system performance and validation 151

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

15.5.2 Results of extrapolation of testbed model and identification of problem
areas

Full model

Type of results: latency, queuing in system, effectiveness of limiting output rates of ROBIns and
of number of outstanding requests in L2PUs and SFls, effect of different strategies for event as-
signment to L2PUs and to SFls.

15.6 Title?

15.6.1 Technology tracking up to LHC turn-on

15.6.1.1 Network technology

15.6.1.2 Processors

15.6.2 Survey of non-ATLAS solutions

(a reality-check on ATLAS approach?)

15.6.3 Implication of staging scenarios

Re-interpretation of performance numbers for staging scenarios

15.6.4 Areas of concern

15.7 Conclusions

15.8 References

15-1
15-2

152 15 Overall system performance and validation

Part 4

Organisation and Plan

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

16 Quality Assurance and Development Process

16.1 Quality Assurance in TDAQ

Quality assurance during the production of hardware and software systems is provided for
with the adoption of a development framework for DAQ components. The development frame-
work consists of distinct development phases. At the end of each phase a set of deliverables is
provided. This framework is complemented by guidelines, checklists and standards, internal re-
views, templates, development and testing tools and coding standards. Those are being adopt-
ed as common working practice and help for error removal and error prevention in the system.

A TDAQ wide body, the Connect Forum [16-1] assists in coordinating development process ac-
tivities and quality assurance methodologies across Atlas TDAQ/DCS. It also provides advice,
especially via the recommendations and information made available through these Web pages
which reflect the dynamic nature of the activity.

A common approach to the development via the use of rules, in-house standards and document
templates helps in building a project culture. Those rules as well as the development phases
themselves are not enforced but rather ment to be a help for developers. Emphasis on the vari-
ous phases will vary and evolve with the life of the project. During event production for exam-
ple, the emphasis will be put on maintenance and regular automized validation testing

A powerful release management system and a convenient working environment provide the
necessary technical working basis.

16.2 The Development Process

The software development process (SDP) in Atlas TDAQ provides the structure and the se-
quence of activities required for development. A basic framework is provided to guide develop-
ers through the steps needed during the development of a component or a system. Continual
review and modification of the SDP provides it with the flexibility to adapt to the evolution of
the components and systems.

Many of the recommended approaches in the SDP are also applicable to the development of

hardware components or sub-systems involving both software and hardware. The SDP consists
of the following phases as shown in Figures 16-1: Brainstorming, Requirements, Architecture
and Design, Implementation, Testing, Maintenance, complemented by reviews. Emphasis on
the phases will evolve within time.

16.2.1 Inspection and Review

Written material including documents and code are subjected to a process of inspection and re-
view at each step from Requirements to Implementation, in the SDP. Inspection is essentially a
quality improvement process used to detect defects testing. The inspection process in the Atlas
TDAQ project is based on Tom Gilb's Software Inspection method [16-2]. An important feature

16 Quality Assurance and Development Process 155

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

Component
Brainstorming Software
Development
Process Flow

l

Implement
Tests
«———| Component Test > Test Report

Integration Test

Table 16-1 Phases and flow of the Software Development Process

——»| Requirements

components

of the inspection procedure is its flexibility, allowing it to evolve as needs change during the
lifetime of the project.

Overall responsibility for an inspection is taken by an inspection leader who appoints an in-
spection team consisting of the document author and three to five inspectors. The core of the in-
spection process is the checking phase where the inspectors read the document in detail,
comparing it against source documents and lists of rules and standards. Defects are logged in a
table, where a defect is defined as a violation of any of the standards. Emphasis is placed on
finding major defects which could seriously compromise the final product. The defects are dis-
cussed at a logging meeting and their acceptance or rejection is recorded in an inspection issue
log. The document author edits the document according to the log making an explanatory note
if an issue is rejected. Feedback is also obtained on how the inspection procedure itself may be
improved.

The principal aim of inspection is to detect and correct major defects in a product. An additional
benefit is the possibility to prevent defects in future products by learning from the defects found
during inspection procedures. Inspection also provides on-the-job education to people new to a
project and generally improves the project's working culture.

A number of web pages have been produced which provide supporting material for inspections
such as instructions for inspectors and log file templates[16-3].

16.2.2 Experience

The Software Development Process provides a disciplined approach to producing, testing and
maintaining the various software systems required by the ATLAS TDAQ project. It helps to en-
sure the production of high quality software which meets the requirements within a predictable
schedule.

156 16 Quality Assurance and Development Process

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

However, one of the key differences in adopting the SDP in an HEP as opposed to industrial en-
vironment is that its application cannot be enforced. Furthermore, the use of such a process may
appear too rigid to physicists not accustomed to working in a strong management framework.
Nonetheless, the working culture can be changed by increasing awareness of the benefits of the
SDP through training, for example involving new group members in inspections, and ensuring
that the SDP itself is sufficiently flexible to evolve with the changing needs of an HEP experi-
ment. This approach is working. The SDP as outlined in this section has already been adopted
by a number of the sub-systems in the ATLAS TDAQ project with positive outcomes [refs].

16.2.3 The Development Phases

16.2.3.1 Requirements

The Requirements phase for a particular sub-system or component consists of gathering the re-
quirements and then documenting them. Several documents have been produced to aid and
control these activities, based on the early experience of some of the sub-systems. The whole
process of working group setup, requirements collection, feedback & review is described [16-4].
Another document [16-5] sets out the principles governing the requirements gathering and doc-
umentation processes, stressing the importance of, for example, documentation, evolutionary
development, communication, and collective ownership of the requirements specification.

The actual process of establishing the requirements for a sub-system or component is aided by a
collection of "hints" [16-6], and reinforced by a set of 22 rules [16-7] for the requirements docu-
ment itself, for which a template [16-8] has been provided in each of the supported documenta-
tion formats.

16.2.3.2 Architecture and Design

The Architectural Analysis and Design Phase of the SDP follows the Requirements phase and
takes as its starting points the User Requirements & Use Cases together with accompanying
documents. This phase has sometimes been referred to as "high-level system design". A sys-
tem's architecture is the highest level concept of that system in its environment. It refers to the
organization or structure of significant components interacting through interfaces, those com-
ponents being composed of successively smaller components and interfaces. A design presents
a model which is an abstraction of the system to be designed. The step from a real world system
to abstraction is analysis. A "Howto' note [16-9] has been produced describing the overall proc-
ess.

For this phase, we are largely following the approach of the Rational Unified Process (RUP),
which contains descriptions of concepts, artifacts, guidelines, examples and templates. In par-
ticular, we have highlighted the RUP descriptions of architectural analysis and design concepts
[16-10] and guidelines for producing software architecture and design documents[16-11].

We have adapted the RUP template for architecture and design documents by including expla-
nations and making it available in supported formats[16-12]. The recommended notation is the
Unified Modelling Language (UML), and the design is presented in the template as a set of
UML-style views. We have also prepared recipes for producing appropriate diagrams and in-
corporating them into documents.

16 Quality Assurance and Development Process 157

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

16.2.3.3 Implementation

The Implementation Phase of the SDP is largely concerned with writing and checking code. At
the end of the implementation phase a Software Inspection is performed.

ATLAS C++ coding conventions[16-13] are being applied to newly written code and being in-
troduced for existing code still in evolution. In the case of Java we await the outcome of the At-
las investigation of coding conventions. DCS will follow the coding standards provided by the
JCOP Framework for PVSS [16-14].

Guidelines [16-15] have been provided for multi-user multi-platform scripting, as well as many
explanations and examples in unix-scripting[16-16].

Experience has been gathered with a number of software tools and recommendations have been
made in the areas of design and documentation [16-17], code checking[16-18], and source code
management[16-19].

16.2.3.4 Component Testing and Integration Testing

Testing occurs during the entire life-time of a component, group of components or entire sys-
tem. Referring to figure [SDP], the initial test plan is written during the requirements and de-
sign phases of the component, so as not to be biassed by the implementation. Since testing is
likely to be an iterative process the test plan is written with re-use in mind. Once implementa-
tion is complete and the code passes checking tools the component undergoes unit testing to
verify its functionality. Compatibility with other components is verified with integration tests.
Several types of tests can be envisaged for both individual components and groups of compo-
nents. These include functionality, scalability, performance, fault tolerance and regression tests.

A test report is written once each test is complete. To aid the testing procedure, templates [16-
20] are provided for both the test plan and test report in each of the supported documentation
formats. More detailed descriptions of the types of test, hints on testing and recommended test-
ing tools are also provided [16-21]. Testing is repeated at many points during the life-time of a
component for example at each new release of the component software or after a period of inac-
tivity (system shutdown). Automatic testing and diagnostic procedures to verify the component
before use greatly improve efficiency.

16.2.3.5 Maintenance

As with testing, maintenance occurs during the entire life-time of a component. Several types of
maintenance can be envisaged. Corrective maintenance involves the fixing of bugs. Adaptive
maintenance involves alterations to the software in order to support changes in the technical en-
vironment such as different operating systems. Preventative maintenance entails the restructur-
ing and rewriting of code for future ease of maintenance. Maintenance is closely coupled to
regression testing which should occur each time a maintenance action has been completed to
verify that the detected problems have been fixed and new defects have not been introduced.
Significant changes to the functionality of the component such as the addition of large numbers
of new requirements should involve a full re-iteration of the SDP cycle.

158 16 Quality Assurance and Development Process

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

16.2.4 The Development Environment

Regular releases of the sub-system software to be used in test beam operation, system integra-
tion and and large scale tests is being complemented by nightly builds and automated tests to
ensure early problem finding of newly developed or enhanced products. The use of a source
code management system and of the standard release building tool CMT [16-19] allows for the
building of common releases of the TDAQ system. These releases are available for the platforms
used in Atlas TDAQ which are currently a number of Linux versions and for some sub-systems
LynxOS and SunOS. Build policies of different sub-system like the use of compiler versions and
platforms are coordinated.

Development tools like design tools, memory leak checking tools, automatic document produc-
tion tools and code checking tools are vital elements of the development environment.

16.3 Quality Assurance During Deployment

16.3.1 Quality Assurance of operations during data taking times

The quality of the DAQ system must be assured when it is in use during the setup and installa-
tion phase of the Atlas data acquisition together with the detectors. Correct and smooth data
taking shall be aimed for during calibration and physics event production.

Quiality assurance is achieved by prevention, monitoring and fault tolerance.

= prevention: this includes training, appropriate documentation, a well defined software
development process, proper management of computing infrastructure (computer farms,
readout electronics and networks), tracing of hardware and software changes, regular
testing of components.

= monitoring: special tasks to monitor proper functioning of equipment and data integrity.
These may run as special processes or be part of the TDAQ applications. Anomalies are
reported, analysed by human/artificial intelligence and appropriate recovery action is in-
ititated. This may include running special diagnostic code, replacement of faulty equip-
ment, rebooting of processors, restarting of applications, re-establishing network
connections, re-configuration to continue with a possibly reduced system. Incomplete or
corrupted data should be marked in the event data stream and possibly recorded in the
conditions database. Physics monitoring may lead to a change of run with different trig-
ger conditions and event selection algorithms.

fault tolerance: built into the system from the start and using an efficient error reporting, analy-
sis and recovery system this provides the basis (cf. chap.6 for details). Some redundancy to re-
duce possible single point of failures is foreseen where affordable (cf. chap. 6).

During the life of the experiment small or major pieces of hardware or software will need to be
replaced with more modern technology ones. The component structure with the well defined
functionality of each component and well defined interfaces allowing for black-box testing ac-
cording to those functionality specifications will allow to incorporate smoothly new parts into a
running system, in particular also when staging of the system is required.

16 Quality Assurance and Development Process 159

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

16.4 References

16-1 http://atlas-connect-forum.web.cern.ch/Atlas-connect-forum/

16-2 reference to Tom Gilb’s inspection method

16-3 TDAQ inspection web pages

16-4 Practical Steps towards an Atlas TDAQ Requirements document.

16-5 Requirements gathering and documentation "principles”.

16-6 Hints on how to establish requirements.

16-7 Requirements Document Rules ATLAS DAQ 'in-house' rules for Requirements
documents. ID: ATD-R-R1.

16-8 Requirements Document Template for Systems and Components, Software and
Hardware.

16-9 How-to for Design

16-10 RUP URL for concepts.

16-11 RUP URL for guidelines.

16-12 Template for Software Architecture Document.

16-13 ATLAS C++ Coding Standard Specifiation The coding conventions.
16-14 JCOP Framework for PVSS.

16-15 Multi-user multi-platform scripting guidelines.

16-16 Unix-scripting examples and explanations.

16-17 Doxygen, Visual Thought, Together, DOC++, Source Navigator
16-18 RuleChecker

16-19 CVS, SRT, CMT

16-20 reference to templates on web page

16-21 reference to testing web page
open points:

- HW inventory and information logging

160 16 Quality Assurance and Development Process

ATLAS
High-Level Triggers, DAQ and DCS

Technical Design Report
30 June 2003

17 Costing

17.1 Initial system

17.2 Final system

17.3 Deferral plan

17.4 References

17-1
17-2

17 Costing

161

ATLAS

High-Level Triggers, DAQ and DCS

Technical Design Report
30 June 2003

162

17 Costing

ATLAS
High-Level Triggers, DAQ and DCS

Technical Design Report
30 June 2003

18 Organization and resources

Should the geographical, racks, power supplies, and cooling issues be addresses in this chapter or in the

system component ones?

18.1 ...

18.2 References

18-1
18-2

18 Organization and resources 163

ATLAS

High-Level Triggers, DAQ and DCS

Technical Design Report
30 June 2003

164

18 Organization and resources

ATLAS
High-Level Triggers, DAQ and DCS

Technical Design Report
30 June 2003

19 Work-plan

Post TDR.

19.1 Schedule

19.2 Commissioning

19.2.1 TDAQ

19.2.2 Tools for detectors

19.3 References

19-1
19-2

19 Work-plan

165

ATLAS
High-Level Triggers, DAQ and DCS

Technical Design Report
30 June 2003

This document has been prepared with Release 5.5 of the Adobe FrameMaker® Technical Publishing
System using the Technical Design Report template prepared by Mario Ruggier of the Information and

Programming Techniques Group, ECP Di

collaboration.

ion, CERN, according to requirements from the ATLAS

To facilitate multiple author editing and electronic distribution of documents, only widely available
fonts have been used. The principal ones are:

Running text:
Chapter headings:

2nd, 3rd and 4th level headings:

Figure and table captions:

166

Palatino 10.5 point on 13 point line spacing
Helvetica Bold 18 point

Helvetica Bold 14, 12 and 10 point respectively
Helvetica 9 point

