B Glossary

The glossary has been split into two sections, one with acronyms and their meaning, and another with actual definitions of some terms.

B.1 Acronyms

API	Application Program Interface
ASIC	Application Specific Integrated Circuit
ATLAS	A Toroidal LHC Apparatus
BC	Bunch Crossing
BCID	Bunch Crossing Identifier
BCR	Bunch Counter Reset
BE	Back-End
CAN	Controller Area Network
CBR	Constant Bit Rate
CBQ	Class Base Queuing
CERN	European Laboratory for Particle Physics
CF	Connect Forum
CFS	Complex Front-end Systems
CIC	Common Infrastructure Controls
СМА	Coincidence Matrix
СМС	Common Mezzanine Card
СМТ	Configuration Management Tool
CondDB	Conditions Database
ConfDB	Configuration Database
CORBA	Common Object Request Broker Architecture
COTS	Commodity/Commercial Off-The-Shelf
СР	Cluster Processor
CSC	Cathode Strip Chamber
СТР	Central Trigger Processor
DAL	Data Access Library
DAQ	Data Acquisition System
DBMS	Database Management System
DC	Data Collection
DCS	Detector Control System

DDC	DAQ-DCS Communication
DDC-CT	DDC Control Transfer
DDC-DT	DDC Data Transfer
DDC-MT	DDC Message Transfer
DF	DataFlow System
DFM	Data Flow Manager
DID	Destination Identifier
DIG	Detector Interface Group
DMA	Direct Memory Access
DSA	Diagnostics Supervision Agent
DSP	Digital Signal Processor
DSS	Detector Safety System
DVS	Diagnostics and Verification System
EB	Event Builder
EBN	EB Network
ECAL	Electromagnetic Calorimeter
ECR	Event Counter Reset
ED	Event Dump
EDM	Event Data Model
EF	Event Filter
EFD	Event Filter Data flow
EFL	Event Format Library
EFN	EF Network
EFPU	EF Processing Unit (processor)
EH	Event Handler
EL1ID	Extended Level-1 ID
ELMB	Embedded Local Monitor Board
EMB	Electromagnetic Barrel
EMEC	Electromagnetic Endcap
EMS	Event Monitoring Service
ERS	Error Reporting Service
ESA	European Space Agency
ESS	Event Selection Software
EVS	Event Viewing System
FC	Flow Control

FCAL	Forward Calorimeter
FDR	Final Design Review
FE	Front-End
FEC	Front-End Controller
FEL	Front-End Link
FILAR	Four Input Links for ATLAS Readout
FPGA	Field Programmable Gate Array
FSM	Finite State Machine
GCS	Global Control Station
GID	Global event Identifier
HEC	Hadronic Endcap Calorimeter
HLT	High Level Trigger
нмі	Human Machine Interface
HOL	Head Of Line
HOLA	High-speed Optical Link for ATLAS
ID	Inner Detector
IDC	Identifiable Container
IGUI	Integrated Graphical User Interface
ILU	Inter-Language Unification system
ΙΟΥ	Interval Of Validity
IP	Interaction Point
IP	Internet Protocol
IPC	Inter-Process Communication
IPC_REF_FILE	IPC Reference File
IS	Information System
JCOP	Joint Controls Project
JDBC	Java Database Connectivity
JEP	Jet Energy Processor
L1A	LVL1 accept
L1ID	LVL1 Trigger Accept Identifier
L2N	LVL2 Network
L2P	LVL2 Processor
L2PU	Level-2 Processing Unit (application)
L2SV	Level-2 Supervisor
LAr	Liquid Argon

LAN	Local Area Network
LBSF	Local Buffering and Storage Facility
LCG	LHC Computing Grid
LCS	Local Control Station
LDC	Link Destination Card
LHC	Large Hadron Collider
LVL1	Level-1 trigger system
LVL2	Level-2 trigger system
LSC	Link Source Card
LTP	Local Trigger Processor
LUT	Look-Up Table
MAC	Media Access Control
MDT	Monitored Drift Tube
MRS	Message Reporting System
MSSM	Minimal SuperSymetric Model
MTTF	Mean Time To Failure
NIC	Network Interface Card
ОВК	Online Book Keeper
ODBC	Open Database Connectivity
OHS	Online Histogramming Service
OKS	Object Kernel Support
OLE	Object Linking and Embedding
OMG	Object Management Group
OPC	OLE for Process Control
OSF	Online Software Farm
OSN	Online Software Network
PCI	Peripheral Component Interconnect
PDR	Preliminary Design Review
PESA	Physics and Event Selection Architecture
PLC	Programmable Logic Controller
PMG	Process Manager
PP	Pre-Processor
pROS	pseudo-ROS
PRR	Production Readiness Review
PSC	PESA Steering Controller

РТ	Processing Task
QoS	Quality of Service
RC	Run Control System
RCC	ROD Crate Controller
RCM	ROD Crate Module
RCP	ROD Crate Processor
RCW	ROD Crate Workstation
RDB	Remote Database
RDO	Raw Data Object
RIO	Reconstruction Input Object
RM	Resource Manager
ROB	Read-Out Buffer
ROBin	Read-Out Buffer input
ROC	Read-Out Crate (Specific implementation of a ROS)
ROD	Read-Out Driver
Rol	Region of Interest
RolB	Region of Interest Builder
ROL	Read-Out Link
ROS	Read-Out Sub-system
RPC	Resistive Plate Chamber
RRC	ROD to ROB Connection
RRM	ROB to ROS Multiplexer
RT	Real Time
RUP	Rational Unified Process
SCADA	Supervisory Control and DAQ
SCS	Sub-system Control Station
SCT	Silicon Tracker
SCX	Surface control room
SDP	Software Development Process
SDX	Surface counting room
SERDES	SERial DESerialiser
SFC	Sub-Farm Crate
SFI	Sub-Farm Input
SFO	Sub-Farm Output
SID	Source Identifier

S-LINK	Simple Link Interface
STL	Standard Template Library
STP	Spanning Tree Protocol
TBF	Token Bucket Filter
ТСР	Transmission Control Protocol
TDAQ	ATLAS Trigger/DAQ/DCS
TDR	Technical Design Report
TES	Transient Event Store
TGC	Thin Gap Chamber
ТМ	Test Manager (also TMGR)
TMGR	Test Manager
TOF	Time Of Flight
TRG	Trigger Module (function inside present implementation of ROS)
TRT	Transition Radiation Tracker
ттс	Timing, Trigger and Control (TTC)
TTCrx	TTC Receiver
TTCvi	TTC VME Interface
UDP	User Datagram Protocol
URD	User Requirements Document
US15	Underground service area
USA15	Underground counting room
UX15	Experimental cavern
VLAN	Virtual Local Area Network
WRR	Weighted Round Robin
XML	Extensible Markup Language

B.2 Definitions

Bunch Crossing Identifier (BCID)

Number that defines the bunch crossing at which an event occurred. Potential bunch crossings are numbered 0 to 3563 per LHC orbit, starting with the first following the LHC extractor gap.

Bunch Counter Reset (BCR)

Signal Broadcast by the TTC system once per LHC orbit to control the phase of local bunch counters.

Back-End (BE)

Part of the DCS system furthest from the detector (as opposed to Front-End)

Central Trigger Processor (CTP)

The place where the LVL1 trigger is generated.

Conditions database (CondDB)

The conditions database contains the record of the detector conditions required for data analysis, e.g. calibration and geometry constants.

Configuration databases (ConfDB)

The configuration databases store the parameters necessary to configure the TDAQ system's architecture, hardware and software components, and running modes.

TDAQ Run or Run

A continuous period in time of data taking using a given hardware and software configuration and a defined set of run parameters. It is identified by a unique run number. The run begins when the TDAQ, detectors and other sub-systems are correctly configured and the machine conditions are acceptable. A run terminates either cleanly when the pre-defined goals of the run are met (e.g. a certain number of events have been taken) or aborts when a serious unexpected problem occurs (e.g. loose the beam or the machine conditions are unacceptable etc.) or when the configuration of the partition changes.

DataCollection (DC)

DataCollection is a subsystem of the Atlas TDAQ DataFlow system responsible for the movement of event data from the ROS to the High Level Triggers. This includes data from Regions of Interest (RoIs) for LVL2 Processing, building complete events for the Event Filter and finally transferring accepted events to Mass Storage. It also handles passing the LVL1 RoI pointers and the allocation of LVL2 processors and load balancing of Event Building.

DataCollection Framework

A set of services used by all LVL2 and EB applications, which provides a unified program structure and common interfaces to Configuration Database, Run Control and other Online Software services.

Data Flow Manager (DFM)

The DFM orchestrates the correct flow of data fragments between ROSs and SFIs. It is triggered by the L2SV, load balances the event building tasks on the SFIs and ensures that the ROSs do not overflow their internal memory buffers.

Data Flow system (DF)

System comprising the ROS and DC HLT subsystems.

Detector Control System (DCS)

It comprises the control of the subdetectors and of the common infrastructure of the experiment and the communication with the services of CERN (cooling, ventilation, electricity distribution, safety etc.) and the LHC accelerator.

Diagnostic package (DVS)

This element uses the test manager to diagnose problems with the TDAQ system and confirm its functionality.

Event

All ROB fragments from the same beam crossing. Identified by run number and GID after event building.

Event Builder (EB)

Part of the DF system, it merges all the fragments belonging to a unique EL1ID into a full event at a single destination and assigns a GID.

Event Counter Reset (ECR)

Signal broadcast by the TTC system to reset the local event counters.

Event Filter (EF)

The hardware and software required for the final stage of the on-line event selection, data monitoring and calibration using offline style algorithms operating on complete events accepted by LVL2.

Event Filter Dataflow (EFD)

Part of the EF system responsible for the flow of event data within the EF.

Event Filter Farm

The farm of processors in which the Event Filter runs. The same farm may also be used for different purposes, e.g. calibration, by running different software on the farm.

Event Filter Sub-Farm

A sub-set of the Event Filter Farm. Input and output are provided, respectively, by the Sub Farm Input and Output elements.

Event filter supervisor

The hardware and software required to globally control the Event Filter. It is also responsible for the configuration, initialisation, and overall error handling of the Event Filter.

Event fragment

A generic term for a sub-set of event data. Specific instances of an event fragment are ROD, ROB, ROS, and sub-detector fragments.

Event Handler (EH)

The logical object within the EF consisting of an event distributor, an event collector, one or more processing elements, an event handler supervisor and an appropriate communication layer.

Extended Level-1 ID (EL1ID)

The L1ID extended to 32 bits by concatenating an 8 bit ECR counter in the high end bits.

Global event Identifier (Gid)

For a given run, the unique TDAQ wide identifier of an event added to the event during event building.

High Level Triggers (HLT)

Comprised of both the LVL2 and EF, the two ATLAS trigger levels that are implemented primarily in software.

Level-1 Trigger (LVL1)

The ATLAS First Level Trigger system provides a hardware based first trigger decision using only a sub-set of an event's data (Calorimeter and Muon only). Normally only the events accepted by LVL1 are transferred from the detectors into the HLT/DAQ system.

Level-1 Trigger Type

An 8-bit word transmitted with the L1A and giving information about the type of event.

Level-2 Farm

The farm of processors (L2Ps) in which the LVL2 software runs.

Level-2 Sub-Farm

A sub-set of the LVL2 farm.

Level-2 Trigger (LVL2)

The ATLAS Second Level Trigger system is a sub-system of the HLT which provides a software based second stage trigger decision, to reduce the rate of triggers from LVL1 by about a factor of 100. It uses 'Regions of Interest' (RoIs) as given by the LVL1 trigger to selectively read out only certain parts of the ATLAS detector hardware and computes a LVL2 trigger decision.

LVL1 Accept (L1A)

LVL1 trigger Accept signal produced by the Central Trigger Processor (CTP) when an event has met the LVL1 trigger criteria. Also in case of partitioned running the local triggers generate L1As.

LVL1 Trigger Accept Identifier (L1ID)

A L1ID is built at different levels of the read-out system. The TTCrx provides a 24-bit L1ID with each L1A signal. In conjunction with the BCID, it defines uniquely an event within a small time frame, of order 1 s.

LVL2 Processing Unit (L2PU)

The L2PU is the application running on one of the Level-2 processors, hosting the HLT processing algorithms and also incorporating the calculations from which the LVL2 trigger decision is derived.

LVL2 Processor (L2P)

A processor within the LVL2 farm.

LVL2 Supervisor (L2SV)

The L2SV is the interface to the LVL1 system via the RoI Builder. It is responsible for distributing events to the LVL2 farm/subfarms and manages the computing resources by means of load balancing algorithms. The L2SV receives the final LVL2 decision from the L2PU. The decision results are communicated to the DFM so that accepted events can be further analyzed, and rejected events can be flushed from the ROS memory.

LVL2 Trigger Type

An 8-bit word transmitted with the LVL2 decision.

Message Reporting System (MRS)

A facility which allows all software components in the ATLAS TDAQ system to report error messages to other components.

Object Kernel Support (OKS)

This is a package which provides a simple active persistent in-memory object manager which is used to implement run-time configuration databases.

Online Software System

All the software for configuring, controlling and monitoring of the TDAQ system. It excludes the management, processing and transportation of physics data.

Partitions (many defs)

See chapter 3.

Process Manager (PMG)

This element performs basic job control of software components of the TDAQ (starting, stopping, and monitoring basic status).

Processing Task (PT)

The software running on an EF processing node in charge of transforming the event data. The transformation may be filtering, reformatting, monitoring or calibration. Several processing tasks can be running concurrently on the same processing node.

pseudo-ROS (pROS)

The pROS is the unit which receives the detailed LVL2 result from the LVL2 Processing Units for each event to be passed to event building. At event building time the pROS is treated just like a ROS, thus including the detailed LVL2 result into the full event.

Read-Out Buffer (ROB)

The buffer which receives data from one ROL.

Read-Out Driver (ROD)

The detector specific Front-End Functional element which gathers data from the derandomizers over one or more data streams and builds ROD fragments of events to be sent to the ROS or RoIB. Gathers data from FEBs; Sends fragments to ROB or RoIB.

Read-Out Link (ROL)

The physical link between ROD and ROS through which the data are sent at the event rate of the LVL1 trigger accept.

Read-Out Sub-system (ROS)

Unit which holds a number of ROBins.

Read-Out System (ROS)

A system of the ATLAS TDAQ comprising the ROS sub-systems and responsible for receiving data from the RODs and for supplying event fragments to the LVL2 and EB sub-systems.

Region of Interest (Rol)

A region limited in eta and phi, indicated by the LVL1 trigger to contain candidates for objects requiring further computation. Some RoI's may be defined internally within the level-2 trigger system.

Region of Interest Builder (RoIB)

The element which combines RoI information from different parts of LVL1 and forwards it to a LVL2 supervisor.

ROD fragment	Data fragment provided by one ROD to the Read-Out System (ROS).
ROS fragment	The set of ROB fragments, within a ROS (in this case sub-system), with the same Gid and to be sent to HLT.