
ATLAS
High-Level Triggers,
DAQ
and DCS

Technical Design Report
Issue: Pre-release Draft 2
Revision: 1
Reference: ATLAS TDR-xx
Created: 12 November 2002
Last modified: 19 March 2003
Prepared By: ATLAS HLT/DAQ/DCS Group

ATLAS Technical Design Report
High-Level Triggers, DAQ abd DCS 30 June 2003

ii

All trademarks, copyright names and products referred to in this document are acknowledged as such.

ATLAS Technical Design Report
High-Level Triggers, DAQ abd DCS 30 June 2003

 ATLAS Collaboration iii

ATLAS Collaboration

CERN
European Laboratory for Particle Physics (CERN), Geneva

ATLAS Technical Design Report
High-Level Triggers, DAQ abd DCS 30 June 2003

iv Acknowledgements

Acknowledgements

The authors would like to thank Mario Ruggier for preparing the template upon which this doc-
ument is based and the DocSys group for their help in using it.

ATLAS Technical Design Report
TDR Name 5 June 1998

 Table Of Contents v

Table Of Contents

ATLAS Collaboration . iii

Acknowledgements . iv

Part 1
Global View . 1

1 Overview . 3
1.1 Main system requirements 4

1.1.1 From physics 4
1.1.2 From Read-out 4
1.1.3 Functional and operational 4
1.1.4 Long timescale operation 4

1.2 System functions . 4
1.2.1 Detector Readout 4
1.2.2 Event selection and rate reduction 5
1.2.3 Data transport 5
1.2.4 Experiment Operation and Control 5
1.2.5 Detector controls. 5

1.3 Types of data TDAQ deals with 6
1.3.1 Detector control values 6
1.3.2 Event data . 6
1.3.3 Configuration data 6
1.3.4 Conditions data 6
1.3.5 Statistics and monitoring data 6

1.4 Long Term Perspectives 6
1.5 Glossary . 7
1.6 References . 7

2 Parameters . 9
2.1 Detector R/O parameters 9

2.1.1 RODs per detector per partition 10
2.1.2 Fragment sizes per detector 12

2.2 Trigger and Data Flow parameters 13
2.3 Monitoring requirements 15

2.3.1 Monitoring matrix 16
2.4 DCS parameters . 16

2.4.1 Data Volumes and rates 16
2.5 References . 17

3 System Operations . 19
3.1 TDAQ states . . 19
3.2 The run . 20

3.2.1 Run and Run Number 20

ATLAS Technical Design Report
TDR Name 5 June 1998

vi Table Of Contents

3.2.2 Event identification 21
3.2.3 Requirements 21
3.2.4 Categories of runs 22
3.2.5 Operations during a Run. 22
3.2.6 Transition between Runs. 23

3.3 Partitions and related operations 25
3.4 Operations outside a run 26
3.5 Error/Fault reporting/handling strategy. 26
3.6 Data Bases . 27
3.7 References . 27

4 Physics selection strategy 29
4.1 Requirements . 29
4.2 The approach . 30
4.3 Selection objects . 31
4.4 Trigger menus . 32

4.4.1 Physics triggers 33
4.4.2 Pre-scaled and exclusive physics triggers 34
4.4.3 Monitor and calibration triggers 36
4.4.4 Physics coverage 37

4.5 Adaptation to changes in running conditions 37
4.5.1 Luminosity changes 38
4.5.2 Background conditions 38
4.5.3 Mechanisms for adaptation 38

4.6 Determination of trigger efficiencies 38
4.6.1 Bootstrap procedure 39
4.6.2 Orthogonal selections 39
4.6.3 Di-object selections 39
4.6.4 Required statistics 39

4.7 Summary. . 40
4.8 References . 40

5 Architecture . 41
5.1 TDAQ context . 41
5.2 Context Diagram . 41

5.2.1 TDAQ Interfaces 42
5.2.1.1 TDAQ interfaces to ATLAS 43

5.2.1.1.1 Level 1 Trigger. 43
5.2.1.1.2 Detector specific triggers 43
5.2.1.1.3 Detector Front-ends 43
5.2.1.1.4 DCS 44
5.2.1.1.5 Detector Monitoring (ROD Crate to Online SW) 44
5.2.1.1.6 Conditions Database. 44

5.2.1.2 External interfaces 44
5.2.1.2.1 Mass Storage 44
5.2.1.2.2 LHC 45

ATLAS Technical Design Report
TDR Name 5 June 1998

 Table Of Contents vii

5.3 TDAQ Organisation 45
5.3.1 Functional decomposition 45
5.3.2 TDAQ building blocks and sub-systems 46
5.3.3 Component categories 47

5.4 TDAQ generic architecture 48
5.4.1 Architectural components 48

5.5 TDAQ data flow architectural view 51
5.6 TDAQ controls and supervision view 52
5.7 Information sharing services view 53
5.8 TDAQ data base view 53
5.9 HLT view. . 54
5.10 Partitioning . 54
5.11 Baseline architecture implementation 55

5.11.1 Overview . 55
5.11.2 Read Out Link 56
5.11.3 Read Out Buffer 57
5.11.4 Read Out System 58
5.11.5 Level 2 and Event Building Network. 58
5.11.6 RoI Builder and Level 2 Supervisor 58
5.11.7 Level 2 Processing Units 59
5.11.8 Data Flow Manager. 59
5.11.9 SFI . 59
5.11.10 Eventfilter Network 59
5.11.11 Eventfilter Nodes 59
5.11.12 Sub Farm Output 60
5.11.13 Other baseline elements 60

5.12 Scalability of the system 60
5.13 References . 60

6 Fault Tolerance and Error Handling 61
6.1 Fault Tolerance and Error Handling Strategy 61
6.2 Error Definition and Identification 62
6.3 Error Reporting Mechanism 62
6.4 Error Diagnostic and Verification 63
6.5 Error Recovery . . 63
6.6 Error Logging and Error Browsing 64
6.7 Typical Use Cases 64

6.7.1 Reliability and fault tolerance in the Data Flow 66
6.7.1.1 Detector read-out 66
6.7.1.2 Level 1 to RoI builder 66
6.7.1.3 Control and event data messages 66
6.7.1.4 Applications 66

6.7.2 Reliability and fault tolerance in the XXX system 66
6.8 References . 66

7 Monitoring . 67

ATLAS Technical Design Report
TDR Name 5 June 1998

viii Table Of Contents

7.1 Overview. . 67
7.2 Monitoring sources 67

7.2.1 DAQ monitoring 67
7.2.1.1 Front-end and ROD monitoring 67
7.2.1.2 Data Collection monitoring 67

7.2.2 Trigger monitoring 68
7.2.2.1 Trigger decision 68

7.2.2.1.1 LVL1 decision 68
7.2.2.1.2 LVL2 decision 68
7.2.2.1.3 EF decision 68
7.2.2.1.4 Classification monitoring 68
7.2.2.1.5 Physics monitoring 68

7.2.2.2 Operational monitoring 69
7.2.2.2.1 LVL1 operational monitoring. 69
7.2.2.2.2 LVL2 operational monitoring. 69
7.2.2.2.3 EF operational monitoring. 70
7.2.2.2.4 PESA SW operational monitoring 70

7.2.3 Detector monitoring 71
7.3 Monitoring destinations and means 72

7.3.1 Online Software services 72
7.3.2 Monitoring in the Event Filter 73
7.3.3 Monitoring after the Event Filter 73

7.4 Archiving monitoring data 73

Part 2
System Components . 75

8 Data-flow . 77
8.1 (Possible introduction) 77
8.2 Detector read-out and event fragment buffering 77

8.2.1 Read-out link 77
8.2.2 Read-out subsystem 79

8.2.2.1 High Level Design 79
8.2.2.2 Design of the ROBIN 80
8.2.2.3 Implementation and performance 82
8.2.2.4 pROS 86

8.2.3 ROD crate data acquisition 86
8.2.3.1 High Level design 88
8.2.3.2 Implementation 89

8.3 Boundary and interface to the level 1 trigger 90
8.3.1 Description 91
8.3.2 Region of interest builder 91

8.3.2.1 Detailed design 92
8.3.2.2 Performance 92

8.4 Control and flow of event data to high level triggers 93

ATLAS Technical Design Report
TDR Name 5 June 1998

 Table Of Contents ix

8.4.1 Message passing 93
8.4.1.1 Control and event data messages 93

8.4.1.1.1 L2SV 93
8.4.1.1.2 2.2 L2PU 94
8.4.1.1.3 ROS 94
8.4.1.1.4 2.5 pROS 95
8.4.1.1.5 2.6 DFM 95
8.4.1.1.6 SFI 95

8.4.1.2 Ethernet. 96
8.4.1.3 Design of the message passing component. 96
8.4.1.4 Performance of the message passing 96

8.4.2 Data collection 98
8.4.2.1 General overview 98

8.4.2.1.1 OS Abstraction Layer 99
8.4.2.1.2 Error Reporting 99
8.4.2.1.3 Configuration Database 100
8.4.2.1.4 System Monitoring 100
8.4.2.1.5 Run Control 100
8.4.2.1.6 Message Passing 100

8.4.2.2 RoI data collection 101
8.4.2.2.1 Design 101
8.4.2.2.2 Performance. 101

8.4.2.3 Event Building 101
8.4.2.3.1 Design 101
8.4.2.3.2 Performance. 101

8.5 Scalability. . 105
8.5.1 Detector read-out channels 105

8.5.1.1 Control and flow of event data 105
8.5.1.2 Configuration and control 105

8.5.2 Level 1 rate 105
8.6 References . 105

9 High-level trigger . . 107
9.1 HLT Overview . . 107
9.2 Level 2 . . 107

9.2.1 Overview . 107
9.2.2 RoI Builder 108
9.2.3 LVL2 Supervisor. 108
9.2.4 LVL2 Processors 108

9.2.4.1 L2PU. 108
9.2.4.2 PSC (PESA Steering Controller) 111
9.2.4.3 Data access i/f’s 112

9.2.5 pROS . 113
9.2.6 LVL2 Operation 113

9.3 Event Filter . 113
9.3.1 Overview . 113

ATLAS Technical Design Report
TDR Name 5 June 1998

x Table Of Contents

9.3.1.1 Functionality 113
9.3.1.2 Operational analysis 114

9.3.2 Event Handler 114
9.3.2.1 Event Filter Dataflow 115
9.3.2.2 Processing Task 117

9.3.3 Supervision 118
9.3.3.1 Design 118

9.3.4 Extra functionality possibly provided by EF 119
9.4 Event selection software 119

9.4.1 Package Dependencies in the Online System 121
9.4.2 Package Dependencies in the Offline 122
9.4.3 An Overview of the Event Selection Software 123
9.4.4 The Event Data Model Sub-package 124

9.4.4.1 Object Relations and Event Structures 126
9.4.5 The HLT Algorithms Sub-package 127

9.4.5.1 The Seeding Mechanism 128
9.4.6 The Steering Sub-package 131

9.4.6.1 The Trigger Configuration 131
9.4.6.2 An Overview of the Steering 132
9.4.6.3 Configuration of the event selection software 133
9.4.6.4 The LVL1 Conversion 134
9.4.6.5 The Step Processing 135
9.4.6.6 Obtaining the LVL2 and EF Results 136
9.4.6.7 Ending a Run of the Event Selection Software 137

9.4.7 The Data Manager Sub-package 138
9.4.7.1 Storegate as the Transient Event Store 140
9.4.7.2 The Support for Navigation. 140
9.4.7.3 The Raw Data Access using the London Scheme . . . 141
9.4.7.4 Retrieve by Region 141
9.4.7.5 Identifiable Containers and the Reconstruction Input Data .

142
9.4.7.6 Data Request by Detector Identifiers. 142
9.4.7.7 ROB Data Request and Lazy Data Preparation 142

9.4.8 Further Issues 143
9.5 References . 144

10 Online Software . 145
10.1 Introduction. . 145
10.2 The Architectural Model 146
10.3 Control . 147

10.3.1 Control Functionality 147
10.3.2 Performance and Scalability Requirements on Control 148
10.3.3 Control Architecture 149

10.3.3.1 User Interface 149
10.3.3.2 Supervision 149
10.3.3.3 Verification 150

ATLAS Technical Design Report
TDR Name 5 June 1998

 Table Of Contents xi

10.3.3.4 Process, Access and Resource Management systems . . 151
10.3.4 Prototype Evaluation 152

10.3.4.1 Scalability and Performance Tests 152
10.3.4.2 Technology Considerations 154

10.4 Databases . . 154
10.4.1 Functionality of the Databases 154

10.4.1.1 Configuration Databases 155
10.4.1.2 Online Bookkeeper 155
10.4.1.3 Conditions Databases Interfaces 155

10.4.2 Performance and Scalability Requirements on the Databases . . 155
10.4.3 Architecture of Databases 156

10.4.3.1 Configuration databases 156
10.4.3.2 Online bookkeeper 157
10.4.3.3 Conditions database interface 158

10.4.4 Application of databases to the TDAQ sub-systems 158
10.4.5 Prototype evaluation 158

10.4.5.1 Configuration Databases 158
10.4.5.2 Online Bookkeeper 159

10.5 Information Sharing 159
10.5.1 Functionality of the Information Sharing Services 160
10.5.2 Performance and scalability requirements on Information Sharing 160
10.5.3 Architecture of Information Sharing Services 160

10.5.3.1 Information Service. 161
10.5.3.2 Error Reporting Service 162
10.5.3.3 Online Histogramming Service. 162
10.5.3.4 Event Monitoring Service 163

10.5.4 Application of Information Sharing Services to the TDAQ sub-systems
163

10.5.5 Prototype evaluation 164
10.5.5.1 Description of the Current Implementation 164
10.5.5.2 Performance and scalability of current implementation . 164

10.6 Integration tests . 165
10.7 References . 165

11 DCS. . 167
11.1 Introduction . . 167
11.2 Organization of the DCS 167
11.3 Front-End System 168

11.3.1 Embedded Local Monitor Board (ELMB) 169
11.3.2 Other FE equipment 169

11.4 The Back-End System 169
11.4.1 Functional Hierarchy 170
11.4.2 SCADA . . 171
11.4.3 PVSS . . 172
11.4.4 PVSS Framework 172

11.5 Integration FE-BE 173

ATLAS Technical Design Report
TDR Name 5 June 1998

xii Table Of Contents

11.5.1 OPC CANopen server. 174
11.6 Read-out chain . . 174

11.6.1 Performance of the DCS readout chain 175
11.6.2 Long term operation of the readout chain 176

11.7 Applications . 177
11.8 Connection to DAQ 177

11.8.1 Data Transfer Facility (DDC-DT) 178
11.8.2 Message Transfer Facility (DDC-MT) 179
11.8.3 Command Transfer Facility (DDC-CT) 179

11.9 Interface to External Systems 180
11.9.1 CERN Technical Services. 180
11.9.2 Detector Safety System 180
11.9.3 Magnet system 181
11.9.4 LHC . . 181

11.10 References . 181

12 Experiment Control . . 183
12.1 Introduction. . 183
12.2 Control Coordination 183

12.2.1 Operation of the LHC machine 183
12.2.2 Operation of the DCS as a State Machine 183
12.2.3 Operation of the TDAQ States 184
12.2.4 Connections between States. 185

12.3 Sub-system Control 186
12.3.1 Online Software Control Concepts 186
12.3.2 Data Flow Control 187
12.3.3 HLT Farm Supervision 188
12.3.4 Detector control 189

12.4 Control Scenarios 190
12.4.1 Initialisation, Data-taking and Shutdown Phase 190
12.4.2 Control of a Physics Run 192
12.4.3 Calibration Run 193
12.4.4 Operation outside a Run 194

12.5 References . 195

Part 3
System Performance . 197

13 Physics selection and HLT performance 199
13.1 Introduction. . 199
13.2 Common tools for selection 200

13.2.1 Algorithmic View of the Core Software Framework 200
13.2.2 Event Data Model Components 201

13.2.2.1 Event Data Organization 201
13.2.2.2 Raw Data Model Components 202

ATLAS Technical Design Report
TDR Name 5 June 1998

 Table Of Contents xiii

13.2.2.2.1 Inner Detector 202
13.2.2.2.2 Calorimeters. 203
13.2.2.2.3 Muon Spectrometer 204

13.2.2.3 Reconstruction Data Model Components 205
13.2.2.3.1 Inner Detector 205
13.2.2.3.2 Calorimeters. 206
13.2.2.3.3 Muon Spectrometer 206

13.2.2.4 Reconstruction Output 206
13.2.2.4.1 Tracks 206
13.2.2.4.2 Calorimeter Clusters 206

13.2.3 Tools for HLT Algorithms 207
13.2.3.1 SpacePoint Formation 207
13.2.3.2 Track Extrapolation. 207

13.2.4 HLT Algorithms for LVL2 208
13.2.4.1 IDSCAN 208
13.2.4.2 SiTrack 208
13.2.4.3 TRTLUT 209
13.2.4.4 TRTKalman 209
13.2.4.5 T2Calo 210
13.2.4.6 muFast 210

13.2.5 HLT Algorithms for EF 211
13.2.5.1 xKalman++ 211
13.2.5.2 iPatRec 212
13.2.5.3 LArClusterRec 212
13.2.5.4 egammaRec 212
13.2.5.5 Moore 213

13.3 Signatures, rates and efficiencies 213
13.3.1 e/gamma . 214

13.3.1.1 HLT Electron Selection Performance 215
13.3.1.2 HLT Electron/Photon Algorithm Optimization 216
13.3.1.3 HLT Strategy and the LVL2–EF Boundary 217

13.3.2 Muon selection 218
13.3.2.1 The LVL2 Muon Standalone Algorithm muFast 218
13.3.2.2 The LVL2 Muon Combined Algorithm muComb . . . 218
13.3.2.3 The Muon Event Filter Algorithm MOORE 219
13.3.2.4 The Physics Performances of LVL2 Muon algorithms . . 219
13.3.2.5 The Physics Performances of the Muon Event Filter . . 220
13.3.2.6 The Timing Performances of the Muon Algorithms. . . 220

13.3.3 Tau/jets/ETmiss. 221
13.3.4 b-tagging . 221
13.3.5 B-physics . 221
13.3.6 Di-muon triggers 222
13.3.7 Hadronic final states 222
13.3.8 Muon-electron final states 223
13.3.9 Resource estimates 224

13.4 Event rates and size to off-line 224

ATLAS Technical Design Report
TDR Name 5 June 1998

xiv Table Of Contents

13.5 Start-up scenario . 225
13.6 References . 225

14 Overall system performance and validation 227
14.1 Introduction. . 227
14.2 Integrated Prototypes 227

14.2.1 System performance of event selection 227
14.2.1.1 Measurement and validation strategy 227
14.2.1.2 Event selection at LVL2 228
14.2.1.3 Event selection at the Event Filter. 229

14.2.1.3.1 The Event Filter Processing Task 229
14.2.1.3.2 Event Filter Prototype 231

14.2.1.4 Testing of HLT 232
14.2.2 The 10% prototype 232

14.2.2.1 Laboratory setup 232
14.2.2.2 Description of the measurements 233
14.2.2.3 Results 233

14.3 Functional tests and testbeam. 233
14.4 Paper model. . 234

14.4.1 LVL1 trigger menu 234
14.4.2 Parameters relevant for LVL2 processing 235
14.4.3 Parameters relevant for Event Builder and Event Filter 236
14.4.4 Data rate summaries 237
14.4.5 The role of sequential processing 238

14.5 Computer model 239
14.5.1 Result of testbed model 240
14.5.2 Results of extrapolation of testbed model and identification of problem

areas . . 240
14.6 Title? . 240

14.6.1 Technology tracking up to LHC turn-on 240
14.6.1.1 Network technology 240
14.6.1.2 Processors. 240

14.6.2 Survey of non-ATLAS solutions 240
14.6.3 Implication of staging scenarios 240
14.6.4 Areas of concern 241

14.7 Conclusions . . 241
14.8 References . 241

Part 4
Organisation and Plan 243

15 Quality Assurance and Development Process 245
15.1 Quality Assurance in TDAQ 245
15.2 The Development Process 245

15.2.1 Inspection and Review 245
15.2.2 Experience. 246

ATLAS Technical Design Report
TDR Name 5 June 1998

 Table Of Contents xv

15.2.3 The Development Phases 247
15.2.3.1 Requirements 247
15.2.3.2 Architecture and Design 247
15.2.3.3 Implementation 248
15.2.3.4 Component Testing and Integration Testing 248
15.2.3.5 Maintenance 248

15.2.4 The Development Environment 249
15.3 Quality Assurance During Deployment 249

15.3.1 Quality Assurance of operations during data taking times . . . 249
15.4 References . 250

16 Costing . 251
16.1 Initial system . 251
16.2 Final system . . 251
16.3 Deferral plan . 251
16.4 References . 251

17 Organization and resources 253
17.1 253
17.2 References . 253

18 Work-plan . 255
18.1 Schedule . . 255
18.2 Commissioning. . 255

18.2.1 TDAQ . 255
18.2.2 Tools for detectors 255

18.3 Workplan up to June 2005 255
18.4 References . 255

ATLAS Technical Design Report
TDR Name 5 June 1998

xvi Table Of Contents

Part 1

Global View

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

1 Overview 3

1 Overview

This chapter introduces the overall organisation of the document into four parts and gives an
overview of the principal system requirements and functions as well as listing the principal
data types used in the system. A glossary is included at the end of the chapter for the reader’s
convenience.

The document has been organised into four parts:

• Part I - Global View

Chapters 2, 3 and 4 address the principal system and experiment parameters which de-
fine the main requirements of the TDAQ system, the global system operations, and the
physics requirements and event selection strategy respectively. Chapter 5 defines the
overall architecture of the HLT/DAQ system and analyses the requirements of its princi-
pal components while chapters 6 and 7 address more specific fault tolerance and monitor-
ing issues

• Part II - System Components

This part describes in more detail the principal components and functions of the system.
Chapter 8 addresses the design and performance of the dataflow component which is re-
sponsible for the transport of event data from the output of the detector readout links
(ROLs) to mass storage as well as serving data to the High Level Trigger (HLT) system.
Chapter 9 explains the composition of the HLT into a level 2 trigger and an event filter
component and details the design of the dataflow within the HLT, the specificities of the
HLT system supervision and the design and implementation of the event selection soft-
ware framework which runs in the HLT. Chapter 10 addresses the online software which
is responsible for the run control and supervision of the entire TDAQ system and the de-
tector systems during data-taking. It is also responsible for many miscellaneous services
such as error reporting, run parameter accessibility and histogramming and monitoring
support. Chapter 11 describes the Detector Control System (DCS), responsible for the con-
trol and supervision of all the detector services such as gas and high voltage as well as
monitoring many critical parameters of the detectors’ operation. Chapter 12 draws to-
gether the various aspects of experimental control detailed in previous chapters and ex-
amines several use cases for the overall operation and control of the experiment,
including: data-taking operations, calibration runs and required operations outside data-
taking.

• Part III - System Performance

Chapter 13 addresses the physics selection and performance. The common tools used for
physics selection are described as well as the physics algorithms and their performance.
Overall HLT output rates and sizes are also discussed. A first analysis of how ATLAS will
handle the first year of running from the point of view of event selection assuming a spe-
cific machine startup scenario is presented. Chapter 14 discusses the overall performance
of the HLT/DAQ system from various points of view, namely: the HLT performance as
analysed in dedicated testbeds, the overall performance of the system in a testbed of
~10% ATLAS size, functional tests of the system in the detector testbeam environment.
Data from these various testbeds is also used as input to detailed modelling of a full-scale
ATLAS system.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

4 1 Overview

• Part IV - Organization and Planning

Chapter 15 discusses quality assurance issues and explains the software development
process employed. Chapter 16 presents the system costing and staging scenarios. Chapter
17 presents the overall organisation of the project and general system resource issues.
Chapter 18 presents the HLT/DAQ workplan for the next phase of the project up to LHC
turn-on on 2007.

1.1 Main system requirements

This section will present the principal requirements on the HLT/DAQ system from several
points of view.

1.1.1 From physics

Rejection from 75kHz to O(100 Hz)

Flexibility of selection (algorithmic, thresholds) - adaptability for new algorithmic strategies &
for new (un-prepared for) physics signatures

1.1.2 From Read-out

Requirements & limitations from detectors in terms of readout bandwidth and also variation in
LHC performance

1.1.3 Functional and operational

1.1.4 Long timescale operation

Requirements of modularity and the necessity of using commercial equipment

1.2 System functions

Describe briefly the principal system functions of the HLT/DAQ.

1.2.1 Detector Readout

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

1 Overview 5

1.2.2 Event selection and rate reduction

In particular, the introduction of two levels in HLT

1.2.3 Data transport

1.2.4 Experiment Operation and Control

1.2.5 Detector controls

The principal task of DCS is to enable the coherent and safe operation of the ATLAS detector. It
supervises all hardware of the experimental set-up, not only the different subdetectors of AT-
LAS, but also the common experimental infrastructure. It also communicates with external sys-
tems like the infrastructure services of CERN and most notably with the LHC accelerator.

Safety aspects are treated by DCS only at the least severe level. This concerns mainly questions
of sequencing operations or requiring conditions before executing commands. Also tools for in-
terlocks both in hardware and in software are provided by DCS. Not in realm of DCS are situa-
tions, which could cause major damage to the detector or even endanger people’s lives. The
former is the responsibility of a dedicated Detector Safety System (DSS), with which DCS inter-
acts, and the latter is addressed by the CERN-wide safety and alarm system.

It is mandatory that concerning the hardware of the detector all actions initiated by the operator
and all errors, warnings and alarms are handled by DCS. It has to provide online status infor-
mation to the level of detail required for global operation. Also the interaction of equipment ex-
perts with their subdetector should normally also go via DCS. DCS has to continuously monitor
all operational parameters, signal any abnormal behaviour to the operator and give him guid-
ance. It must also have the capability to automatically take appropriate actions if necessary and
to bring the detector in a safe state.

Concerning the operation of the experiment, an intense interaction with the DAQ system is of
prime importance. Good quality physics data requires detailed synchronisation between the
DAQ system and DCS. Both systems are complementary in as far the DAQ deals with the data
describing a physics event and DCS treats all data connected with the hardware of the detector.
The former are organised by event number and the latter are normally categorised with a time
stamp. The correlation between both is established in offline analysis.

Some parts of the detector will operate continuously because any interruption is costly in time
or money or may even be detrimental to the performance of that detector. Hence its supervision
by DCS is needed continuously. DAQ in contrast runs only when physics data are taken. There-
fore DCS needs complete operational independence. This must however not result in bounda-
ries, which limit functionality or performance. Therefore both share elements of a common
software infrastructure. Different modes of operation are foreseen like taking data with collid-

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

6 1 Overview

ing beams, detector calibration, and stand-alone operation of a subdetector or even of an indi-
vidual detector element.

1.3 Types of data TDAQ deals with

Classification of various data types and associated requirements & limitations. Should also de-
fine specific terms here (more elaboration than in the glossary !!)

1.3.1 Detector control values

Orders of magnitude of amount of data, and its time variation frequency ... the need not to
transport unchanged values

1.3.2 Event data

Byte stream ... what is it ... definition of event format

1.3.3 Configuration data

Define what constitutes configuration data, both for TDAQ and detectors in this context

1.3.4 Conditions data

What constitutes conditions data ... implications of overlap with offline

1.3.5 Statistics and monitoring data

Sources and sinks of histogram and general monitoring data ... what differentiates it

1.4 Long Term Perspectives

A more detailed view of the future planning is described in Chapter 19, but it is instructive to
recall the principal elements here. In the current experiment installation schedule, the initial de-
tector will be completed in December 2006, ready for the first LHC collisions in April 2007. A
cosmic ray run is planned during the last few months of 2006. In its first year of operation, the
LHC is expected to attain a luminosity of 2x1033cm-2s-1. The installation schedule of the TDAQ
system is dictated both by constraints coming from the installation of the system itself as well as
by the detector installation and commissioning schedule and in particular the needs of the de-
tectors of TDAQ services during that time. The first elements of the TDAQ system will be re-
quired by the detectors in mid-2005.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

1 Overview 7

This section should also discuss the fact that the final specification of various parts of the system
will be required at differing times starting early 2004 and going on until mid 2006. The need to
buy computing and network hardware as late as reasonable possible

1.5 Glossary

Is this really the place for the glossary or would it be better in the forward?

1.6 References

1-1

1-2

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8 1 Overview

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

2 Parameters 9

2 Parameters

This chapter is dedicated to the relevant parameters for the HLT/DAQ/DCS system. These in-
clude the detector readout parameters and the trigger selection for the correct dimensioning of
the dataflow system and for understanding the data volumes that will need to be stored. These
will be the subject of the first three sections.

Other important parameters for the correct definition of the system are the ones coming from
the monitoring requirements. These are discussed in the fourth section.

The last section is dedicated to the DCS parameters: the subdivision of the system in detector
parts and the amount of configuration data traffic in case of cold configuration and re-configu-
ration of possible faulty elements.

2.1 Detector R/O parameters

This section could be moved to Section 1.2.1, "Detector Readout".

The ATLAS detector organized into three main systems: the Inner Detector, the Calorimetry and
the Muon Spectrometer. These systems are then subdivided in sub-detectors.

The Inner Detector is divided in the following sub-detectors: Pixel, SCT and TRT. The Pixel sub-
detectors is a detector using the pixel technology with a readout divided in φ regions and it is
sub-divided in two endcaps, one inner barrel B-layer and 2 outer barrel layers. The SCT sub-de-
tector is a Si microstrip detector subdivided into two endcaps and a barrel part subdivided in
two regions for positive and negative η. The TRT sub-detector is a straw tubes tracking detector
providing a particle identification based on the transition radiation.

The Calorimetry is a large system made of several sub-detectors based on different technolo-
gies. The barrel electromagnetic, the endcap electromagnetic, the endcap hadronic and the for-
ward calorimeters use the LAr as sensible media with different absorbers depending on the
particles to be detected. The barrel hadronic calorimeter and two endcaps at larger radii (with
respect to the other calorimeters) in the range |η| < 1.7 is instead based on scintillator-iron
technology: the Tilecal calorimeter.

The Muon spectrometer is subdivided in a barrel part where there are precision chambers based
on Monitored Drift Tubes (MDTs) and trigger chambers based on Resistive Plate Chambers
(RPCs). In the two endcaps up to |η|≤ 2.4, there are again MDTs as precision chambers and
Thin Gap Chambers (TGCs) as trigger chambers. At large pseudo rapidities and close to the in-
teraction point there are Cathode Strip Chambers (CSCs) that are suited to sustain the higher
rate and the more severe background conditions.

In terms of readout signals to be transmitted to the Data Acquisition (DAQ) system, the LVL1
Trigger is another source of data and dedicated ReadOut Drivers (RODs) are used.

The organization in terms of readout is in fact slightly different from the pure division of the de-
tector in sub-detectors and it is illustrated in the first sub-section, where a mapping of the AT-
LAS detector and trigger is specified in terms of data sources (the RODs) for the DAQ system in
terms of the partitioning.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

10 2 Parameters

The concept of a partition used throughout this chapter coincides with the TTC partition con-
cept introduced by the LVL1 TDR.

2.1.1 RODs per detector per partition

The distribution of the ROD modules and crates per sub-detector and partition generally fol-
lows the division of the sub-detectors in parts. This distribution assumes that there is no overlap
of hardware among partitions and that each partition can be independently functional.

In Table 2-1 the number of RODs, ROD crates and ROLs are reported per sub-detector per parti-
tion.

Table 2-1 The distribution of the RODs per detector per partition.

Detector Partition RODs ROD
crates

partitions ROLs Frag size (MB)

In
ne

r
D

et
ec

to
r

Pixel 120 8 3 120 1.3

B Layer 44 3

Disks 12 1

Layer 1 + 2 38+26 4

SCT 92 12 4 92 1.6

Left Barrel 22 2

Right Barrel 22 2

Left Endcap 24 2

Right Endcap 24 2

TRT 256 22 4 256 1.0

Barrel A 32 3

Barrel C 32 3

Endcap A 96 8

Endcap C 96 8

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

2 Parameters 11

C
al

or
im

et
ry

Tilecal 32 4 4 64 1.1

Barrel A 8 1

Barrel C 8 1

Ext Barrel A 8 1

Ext Barrel C 8 1

LAr 192 16 6 768 1.4

EMB A 56 4

EMB C 56 4

EMEC A 35 3

EMEC C 35 3

FCAL 4 1

HEC 6 1

M
uo

n
Sp

ec
tr

om
et

er

MDT 192 16 4 192 1.0

Barrel A 48 4

Barrel C 48 4

Endcap A 48 4

Endcap C 48 4

CSC 32 2 2 32 0.2

Endcap A 8+8 1

Endcap C 8+8 1

LV
L

1
m

u
on

RPC 32 16 2 32 1.0

Half Barrel 1 16

Half Barrel 2 16

TGC 16 8 2 16

Endcap A 8

Endcap C 8

MIROD 1 1 1 1 0.104

LV
L

1
ca

lo

CP/JEP RoI 6 1 or 2 6 0.252

CP 4 1 16 1.5

JEP 4 16 1.1

PP 4 8 16

CTP 1 1 1 0.012—0.038

Table 2-1 The distribution of the RODs per detector per partition.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

12 2 Parameters

These are the basic parameters updated during the 3rd ROD Workshop held in Annecy in No-
vember 2002. The fragment sizes reported in Table 2-1 have to considered as the maximum ex-
pected fragment size during the first phases of the ATLAS data taking and during the
calibrations. A more accurate estimation of the fragment sizes is discussed in the next subsec-
tion (Section 2.1.2).

Concerning the LAr fragment size a more accurate estimation is on going in the community. It is
based on both a compression of the data required and on zero-suppression schemes, but due to
their nature it cannot be expressed in a straightforward way in a table like Table 2-1.

2.1.2 Fragment sizes per detector

Includes physics and calibration data.

Should have average values, spread and uncertainties; should be shown against luminosity; and against
data compression schemes.

The fragment sizes reported in the previous table are indicative and they have to be seen as the
maximum achievable figures.

Investigations are ongoing to obtain more realistic numbers for physics and calibration operations to re-
solve discrepancies with the values used in the Paper Model. The Detector people have to be contacted and
an agreement on the numbers has to be found, based on the latest simulation they have for the sub-detec-
tor readout.

For modelling the fragment sizes specified in Table 2-2 have been assumed (see remark above ta-
ble). For the fragment sizes of the LVL1 RODs and the CSCs see Table 2-1.To each fragment a
ROD header and trailer (together 48 Bytes) and a ROBIn header (56 Bytes) are added. A ROS
subsystem in general will add several fragments together, after which a ROS header (52 Bytes)
is added and a wrapper for the Data Collection software (36 Bytes). The network protocol will
add further headers.

Table 2-2 Raw data fragment sizes in Bytes used for the paper model.

Subdetector Low luminosity Design luminosity

Pixels 200 500

SCT 330 1200

TRT 330 1200

E.m. calorimeter 752 752

Hadron calorimeter 752 752

Muon precision 800 800

Muon trigger (RPCs and TGCs) 380 380

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

2 Parameters 13

2.2 Trigger and Data Flow parameters

Two baseline “LVL1 trigger menus” are used in this report:

1. “low luminosity”: for a luminosity of 2.1033 cm-2s-1 with a LVL1 accept rate of about 20
kHz and a predominantly high transverse momentum trigger. The LVL2 accept rate is
about 600 Hz,

2. “design luminosity”: for a luminosity of 1034 cm-2s-1 with a LVL1 accept rate of about 35
kHz. The LVL2 accept rate is about 1.5 kHz.

Editor: Note that the rates expressed above should be multiplied by a factor of 2 to 3 uncertainty to get the
LVL1 input rates which the TDAQ system should be able to handle, namely 40 kHz at the low luminosity
and 75 kHz at design luminosity.

The data needed for the LVL2 trigger and the type of processing performed by it depends on the
regions of interest supplied by the first level trigger. Each of the four different types of RoIs
(“muon”, “electron/gamma”, “jet” and “hadron”) has its own characteristic type of processing.
The processing consists of several steps and after each step a decision is taken on whether data
from other subdetectors within the region of interest should be requested for further analysis.
The data rates can be estimated with the help of information on the type, rate, sizes and the lo-
cations of the regions of interest and on the mapping of the detector on the ROBins. See ch.for
more details. In Table 2-3 and in Table 2-4 an overview is presented of the most important re-
sults obtained in this way for nominal LVL1 trigger rate. For estimating the size of the LVL2
farms and the number of SFIs the use of dual, resp. single 4 GHz PCs as compute servers has
been assumed. The input bandwidth per SFI has been limited to 60 MByte/s.

The SFIs send the complete events for further analysis to the Event Filter. The Event Filter is ex-
pected to reduce the rate by a factor of 10 (see ch. ...) with a typical processing time of 1 second
per event, which requires a farm of at least 300 or 750 dual-processor machines.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

14 2 Parameters

Table 2-3 Overview of important system parameters for nominal LVL1 trigger rate

Low luminosity Design luminosity

LVL1 trigger rate (kHz) 20.1 34.5

Average number of ROBIns receiving a RoI
request, per LVL1 trigger

18.3 16.6

Average number of groups of 12 ROBIns
receiving a RoI request, per LVL1 trigger

10.7 10.0

Maximum average output bandwidth
per ROBIn (MByte/s)

1.5 2.8

Maximum average RoI
request rate per ROBIn (kHz)

1.2 1.8

Maximum average output bandwidth
per 12 ROBIns (MByte/s)

18.2 33.3

Maximum average RoI
request rate per 12 ROBIns (kHz)

8.2 12.2

Total bandwidth LVL2 traffic (MByte/s) 325 532

LVL2 farm size 32 64

Fragment rate in = request rate out per L2PU
(kHz)

6.8 5.4

Fragment volume in per L2PU (MByte/s) 10.2 8.3

Decision rate per L2PU (kHz) 0.63 0.54

Total bandwidth traffic to Event Builder
(MByte/s)

731 2327

Event Building rate (kHz) 0.6 1.5

Number of SFIs required 12 39

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

2 Parameters 15

2.3 Monitoring requirements

Monitoring will require the transportation of monitoring elements (event fragments and/or
monitoring results such as histograms) from the sources to the destinations. Investigations are
under way to identify the latter ones and the traffic generated by the transportation. One may
already identify :

some sources

• ROD/ROB

• ROS

• SFI

• Trigger processors (LVL1, LVL2, EF)

some destinations and the used networks

Table 2-4 Overview of important system parameters for 75 kHzLVL1 trigger rate

Low luminosity Design luminosity

Average number of ROBIns receiving a RoI
request, per LVL1 trigger

18.3 16.6

Average number of groups of 12 ROBIns
receiving a RoI request, per LVL1 trigger

10.7 10.0

Maximum average output bandwidth
per ROBIn (MByte/s)

5.7 6.1

Maximum average RoI
request rate per ROBIn (kHz)

4.4 3.8

Maximum average output bandwidth
per 12 ROBIns (MByte/s)

69.7 74.3

Maximum average RoI
request rate per 12 ROBIns (kHz)

32.7 26.5

Total bandwidth LVL2 traffic (MByte/s) 1213 1156

LVL2 farm size 116 137

Fragment rate in = request rate out per L2PU
(kHz)

7.0 5.5

Fragment volume in per L2PU (MByte/s) 10.5 8.4

Decision rate per L2PU (kHz) 0.65 0.55

Total bandwidth traffic to Event Builder
(MByte/s)

2728 5060

Event Building rate (kHz) 2.2 3.3

Number of SFIs required 45 83

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

16 2 Parameters

• private workstations + Control (CN) or Data Collection (DCN) network

• Online monitoring farm (possibly the EF Farm, or a sub-set) + Data Collection network

2.3.1 Monitoring matrix

The following table summarises our present knowledge of the relations between the sources
and the destination for monitoring. We are still missing the figures for the expected traffic gen-
erated by monitoring activity. The table will be updated when feedback from the concerned
groups is provided.

2.4 DCS parameters

2.4.1 Data Volumes and rates

The DCS systems will be configured using ConfDB. PVSS (already mentioned and ‘defined’?)
systems (DPTs, DPs, managers/drivers used etc.) will be configured and all associated soft-
ware, such as hardware drivers(?), OPC servers, configuration files for ‘external’ applications
(e.g. DDC) set up using information from ConfDB.

This ‘system’ level configuration will not be done very often, i.e. only at times of hardware
modification (new equipment added, possibly equipment changed). Data volume large due to
high number of separate systems (100 PCs?) though fast data rate not required as this is not a
real time operation and should only be performed during shut-down periods.

During operation of the LHC, various operating modes are required for each sub-system. These
modes require hardware to have different settings. A recipe is defined as a collection of settings
used for a given operating mode. For a given run, more than one recipe may be required at dif-
ferent stages of the run (e.g. beam starting, beam on, beam stopping).

This ‘operating mode’ configuration is completed more often than the system level configura-
tion. Before a run starts, any recipes used will be downloaded from the ConfDB and stored lo-
cally with each system (data consistency problem - may need to lock ConfDB at a given time
before download). The data is then loaded into the running system and applied at the time it is

Table 2-5 Monitoring matrix

Source
Destination

ROD/ROB ROS SFI LVL1 LVL2 EF

private WS
in Control
Room

event frag-
ments
DCN

fragments
DCN

events
DCN

private WS
in Control
Room

histograms
CN

histograms
CN

histograms
CN

histograms
CN

Online/EF
Farm

events
DCN

events
DCN

events
DCN

events
DCN

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

2 Parameters 17

required. The data volume is lower than that for system configuration, though still quite large
as there are many systems, each requiring a number of ‘stages’ containing all values to be set.
Data rate required not high as the downloading is completed before a run starts (how long be-
fore?) and therefore, real-time download is not required.

Information held in ConfDB. System set up (system names in which PCs, manager lists, external
application lists, configuration file(?) for external applications or at least information to allow
these files to be produced, DDC, DPTs, DPs, addressing, dp functions, command transfer, mes-
sage transfer). Recipe set up (original values, archiving, CondDB output configuration, alert
limits, action scripts).

The CondDB will be used to store data read from DCS system. Bi-directional link desirable to al-
low data from both DCS and TDAQ to be correlated and displayed in PVSS. However, main di-
rection is from DCS to CondDB. Desirable to put all values into CondDB (i.e. not only that ‘data
required for off-line’). Data volume will be high (~1,000,000 channels plus others) though data
rate could be low if data not sent in real time (possibly downloaded every 15mins/1 h/12 h/
etc.).

2.5 References

2-1 3rd ROD workshop

2-2 Inner Detector TDR

2-3 LAr Calorimetry TDR

2-4 Tilecal TDR

2-5 Muon Spectrometer TDR

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

18 2 Parameters

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

3 System Operations 19

3 System Operations

Why this chapter? While Chapter 2, "Parameters", somehow says what is required from TDAQ in terms
of performance, this chapter should highlight what is expected by TDAQ when it is “used”.

The chapter contains the description of:

a. how an event is identified, at different levels in TDAQ.

b. What are the global TDAQ states. What are the detector and machine states. Includ-
ing how TDAQ states relate to the detector and machine states. The global state
transition

c. The definition of a run. How runs are identified. How an event is uniquely identi-
fied throughout the life of ATLAS. Types of runs. The question of the transition be-
tween runs. What is allowed during a run, what is done outside the run.

d. Partitioning: definition, operations

e. The general strategy to react to faults and errors (in TDAQ but also, and mainly,
caused by external systems, such as the detector).

f. The role of data bases, what kind of data is permanently stored for what purpose
(and where?).

3.1 TDAQ states

In the context of the global experiment, operations involve three main actors: the ATLAS detec-
tor (the detector for short in the following), the LHC machine and the TDAQ system. The high-
level operation of the experiment, and the relationships between the main actors defined above,
are described in terms of states. A state is a simple concept which summarises what a part of the
experiment is capable to do at a certain point in time. States are also useful to describe how ac-
tors relate one to another.The further development of the concept of states, their refinement in
terms of sub-states and their detailed relationships is the subject of CHAPTER 13

Three main states are useful to described the way TDAQ can operate:

• Initial: in this state the TDAQ system is not capable of performing any useful operation
for the experiment. The only operations allowed on TDAQ are those which bring it to a
situation where data taking can be performed (see below). This may be the state into
which TDAQ is after e.g. a power failure, or TDAQ may revert to this state in order to re-
initialise large parts of ATLAS.

• Standby: in this state the TDAQ system is ready, provided other conditions are met (for
example related to the detector or the LHC machine), to initiate a data taking session. This
means that the various parts and components have been properly initialised and set. For
the purpose of detailing the initialisation procedures, the standby state may be reached
by means of intermediate states: related for instance to loading software into processors,
configuring components, etc.

• Running: in this state the TDAQ system is taking data from the detector.

For the purpose of the global operation of the experiment, two states are associated to the detec-
tor:

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

20 3 System Operations

• Ready: the detector can be used for data taking.

• Not Ready (or Ready): the detector cannot be used for data taking.

Three states may also summarise, for the purpose of operating TDAQ, the conditions of the
LHC machine:

• Stable-Beams: the LHC machine is in a condition which allows safe operation of the de-
tector and beams are available to produce physics events.

• Detector-Safe: the LHC machine is in a condition which allows safe operation of the de-
tector.

• Non Stable-Beams (Stable-Beams): the LHC machine is not in a condition which allow op-
erating the ATLAS detector.

The inter-relationships of these states are indicated, for different types of data taking conditions,
in the diagrams of Figure 3-1.

3.2 The run

3.2.1 Run and Run Number

A run is defined as: a period of data taking in a TDAQ partition with a defined set of stable con-
ditions related to quality of physics.Note: define what are conditions

The run number uniquely identifies a run (today it is a 32 bit number), it associates an event to a
set of stable conditions. A run number is unique and it is never re-used during the lifetime of
the experiment. A run number is generated by a central service.

The proposed mechanism to tag the run number into the event is based on the distribution of
the run number (at the beginning of a run) to the ROD crate controllers. The RODs will then in-
sert the run number into the fragment header for each event.

Any event fragment is identified, anywhere in the system, by its associated run number.

Figure 3-1 Inter-relationship of the detector, machine and TDAQ states.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

3 System Operations 21

3.2.2 Event identification

Up to acceptance by level-2 (or event building in the case of a partition without level-2) an event
is identified by an extended (32-bit) level-1 ID (generated by level-1 as 24-bit number and ex-
tended to 32).

A Global Event Number (GID) uniquely identifies an event, accepted by the level-2 trigger,
within a run. It is generated by a central element (today it could be the DFM) after the LVL2 de-
cision and it is made available, to be tagged into the event, to the element responsible for build-
ing the full event (today this would the SFI).

3.2.3 Requirements

The ATLAS TDAQ system is required to minimise its contribution to the experiment down
time; although a quantitative definition of this requirement is not yet available, one can antici-
pate that the experiment down time due to TDAQ must be well below 1%.

There are two contributions to system down-time which are relevant to the subject of this docu-
ment:

• the time spent by the system to initiate (start) or terminate (stop) a run, and

• the down time when coping with malfunctioning TDAQ components.

The two contributions above have an important impact on:

• how a run is defined, that is what configuration and parameter changes force a new run
and what changes do not force a new run,

• how the transition between runs should be implemented, and

• how faults should be handled during a run.

It is difficult to identify precisely the conditions which characterise the quality of physics, hence
a run. Nevertheless three typical classes of such conditions are: the parameters defining or af-
fecting the selectivity of the triggers (LVL1, LVL2 and EF), the set of sub-detectors participating
to the TDAQ partition, the operational parameters of sub-detectors. A modification of any of
the above conditions forces a new run, that is the events following the change of the conditions
are tagged with a new run number.

Conditions whose change forces a new run are stored in a conditions data base, whose contents
are saved to permanent storage prior to the start of a new run.

Changes which do not force a new run include for example the removal or the insertion of proc-
essors or the disabling of FE channels (insofar as the physics is not affected)1. Those changes
which do not force a new run are not stored in the conditions data base. The change may be en-
tered for example in an electronic experiment logbook if it affects the performance of the TDAQ
system (e.g. removal of an EF processor) or tagged into the event if it affects the data from the

1. The number of e.g. FE channels (or ROBs) which can be removed from the read-out without affecting
the physics is bounded by some threshold which is sub-detector dependent. When the amount of una-
vailable read-out exceeds the threshold, the physics is affected and the run should be stopped.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

22 3 System Operations

detector. As an example of this latter: the removal of a detector or DAQ buffer may be flagged
by appropriately setting a “quality flag” in the fragment header.

A run, when conditions do not change, may extend throughout an entire machine fill.

3.2.4 Categories of runs

Define what they are: what is their purpose, the actors (i.e. what a run type needs), where out-
put goes.

Here we have:

physics run: (part of) the ATLAS detector, a fully functional (i.e. includes HLTs) TDAQ, DCS,
the LHC machine, level-1 (including CTP).

calibration with beams: as physics run but sub-set of detector, no L2 or EF (but may reuse their
infrastructure), LTP

calibration without beams: as above but no need for LHC machine (but make sure that detector
can be switched on), LTP.

commissioning: as above.

3.2.5 Operations during a Run

There is the need for an active1 run, i.e. following the successful execution of the run start com-
mand, to be interrupted temporarily: level-1 triggers are not generated so that some change or
intervention on the detector can be done. Changes and interventions are such that they do not
affect the physics, that is they do not force a new run. The global system state associated to the
temporary interruption of a run is called Paused.

Two commands are available to respectively enter and exit the Paused state: pause and contin-
ue. Pause and continue commands may be issued: by an operator or by software (viz. an expert
system).

When the pause command is issued:

• The level-1 triggers are blocked, by raising the global busy signal.

• All TDAQ elements are issued with the Pause command. Each element will execute it lo-
cally as soon as the handling of the current event is terminated (i.e. TDAQ elements will
not empty their buffers before entering the paused state).

• TDAQ completes the transition to Paused as soon as all the TDAQ elements have entered
the Paused state.

When the continue command is issued:

• All TDAQ elements are issued with the continue command, each element returns to the
running state.

1. TDAQ is said to be in the running state.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

3 System Operations 23

• TDAQ completes the transition to the running state as soon as all the TDAQ elements
have returned to the running state. At this point level-1 triggers are unblocked.

There is another special command which may be issued to a running TDAQ system, the Abort
command. This command is reserved for very special cases and it entails a fast termination of
the run; for example TDAQ elements will not complete the processing of events in their buffers.

3.2.6 Transition between Runs

From the operational point of view, a run is bracketed by a (run) start and a (run) stop com-
mand. These commands have to be sent to all1. the TDAQ elements (viz. processors) for syn-
chronous local execution prior to the transition to the running state.

Prior to the start of a run, or as the immediate consequence of a (run) stop command, the LVL1
Busy is asserted. The LVL1 Busy is removed upon the transition to the running state, this latter
implies that all1. TDAQ elements have completed their local execution of the (run) start com-
mand.

The completion of a run is also a process which needs synchronous local processing of all1. the
TDAQ elements: they receive the stop command, complete the processing of the contents of
their buffers, produce end of run statistics etc. and leave the running state.

In addition to the run control command which signals a TDAQ element when a run is requested
to complete, a mechanism is necessary to determine when the last fragment or event of the ter-
minating run has been processed. This mechanism cannot be part of the run control, it is tightly
related to the flow of the event data in the TDAQ system. This is done by means of a time-out: a
TDAQ element will consider that the last event has been processed when 1) it has received the
“stop run” command and 2) it has not received events for a certain time (for example a time out
of some 10s of seconds).

The transition between two runs (i.e. stopping the previous and starting the next) includes two
potentially time consuming processes:

• the completion of the processing of the contents of all the fragment/event buffers in the
system: front-end buffers, RODs, ROBs, LVL2 and EF nodes;

• the synchronisation of all1 the TDAQ elements to complete the transition stopped/
running or running/stopped. That is, before the TDAQ partition may complete a state
transition, all1. the TDAQ elements have to have completed the transition locally.

There are conditions, for example the LVL1 trigger masks, thresholds and pre-scaling factors, or
sub-detector calibration operating parameters, such that:

3. the modification of their values forces the change to a new run and

4. their value may be required to change relatively often (may be several times per machine
fill).

1. It is envisageable that, in the case of the LVL2 and the EF, only a (to be defined) percentage of the farm
needs to successfully perform the transition. The rest may do it “in the background” and join the new
run afterwords.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

24 3 System Operations

The same considerations may also be applied to calibration runs, when some detector operating
parameter may be required to change frequently.

In these cases the transition between runs as defined in Section 3.4 is not adequate in terms of
the potentially long TDAQ system down time. A more efficient transition between runs is re-
quired and we define:

Checkpoint

a transition in a running TDAQ system, triggered by a change in conditions or by an op-
erator, which 1) results in the following events to be tagged with a new run number and
2) does not need the synchronisation, via run control start/stop commands, of all TDAQ
elements.

The checkpoint transition is intended for those changes in conditions which require that events
be correlated to the new conditions via a new run number but the change has a light implication
on most of TDAQ. It is a mechanism to associate a new run number to events characterised by
new conditions with minimal synchronisation within TDAQ.

A checkpoint transition is started automatically by the TDAQ control system when certain con-
ditions are modified, it may also be initiated manually by an operator or automatically by some
other software component (viz. an expert system). It should be noted that, for a transient time,
events belonging to more than one run could be simultaneously present in the system. In partic-
ular given that LVL2 accepts are not time ordered, a EF node might have to process events be-
longing to two (or in principle even more) different runs.

The main feature of the checkpoint transition is the fact that events keep flowing in the system
continuously: a mechanism is needed for a TDAQ element to detect when the new run begins.
That is to say when the new run number becomes applicable, when the Global Event ID should
be reset to 0 and when a TDAQ element should perform run completion processing and the ini-
tialisation necessary for a new run (for example a LVL2 processor may require to read the new
conditions).

The run number may be used for this purpose, i.e. a TDAQ element recognises a new run when-
ever a piece of data (fragment or full event) is tagged with a new run number. TDAQ elements
may therefore perform the “transition” from the old to the new run at their own pace and time.
Note that the same mechanism is also applicable to analysis and monitoring software dealing
with a statistical sample of the event data: an e.g. monitoring program recognises a new run
whenever it samples an event with a new run number (with the caveat that, as for EF processing
units, programs sampling events after Level-2 might have to handle events belonging to more
than one run). A condition (belonging to a well defined sub-set of the possible run conditions) is
changed or an operator asks for the execution of a checkpoint command.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

3 System Operations 25

3.3 Partitions and related operations

Definition of what a partition is: what for, who are the actors participating to the partition.

Allowed partitions (here we should make reference to the constraints imposed by the TTC system and in-
clude the table of the detector partitions).

What can be done with partitions: join and split.

Material from [3-2].

How partitioning is realised on the system is reserved to Chapter 5, "Architecture" (and possibly Part 2
System Components).

A list of the different ways the TDAQ system may be subdivided follows, each definition
corresponds to a specific function.

• TTC Partition. A TTC partition includes a part of the TTC system and a corresponding
part of the ROD-BUSY feedback tree. A TTC partition corresponds to a single TTCvi
module. The concept of a TTC partition is already present in the Level-1 system.

• TDAQ resource. A TDAQ resource is the smallest part of the ATLAS TDAQ system
which can be individually disabled (masked out of the ATLAS TDAQ), and possibly
enabled, without stopping the data taking process.

• TDAQ segment. A TDAQ segment is defined as a smallest set of TDAQ system
elements that can be configured and controlled1 independently from the rest of the
TDAQ system. A TDAQ segment may be also dynamically removed/inserted from/
into an active TDAQ partition without stopping the run

• TDAQ partition. It is a sub-set of the ATLAS TDAQ system for the purpose of data
taking.The full function of the ATLAS TDAQ is available to a sub-set of the ATLAS
detector.

The word smallest separates the definitions above into independent concepts for the ATLAS
TDAQ system2: resources can be disabled, segments can be removed and operated
independently and partitions are fully functional TDAQ systems running on a sub-set of the
ATLAS detector.

This is not an attempt to define a hierarchy within the ATLAS TDAQ. The concepts of (TDAQ)
resource and segment are introduced because they are useful; the aim is that of formally and
uniquely defining the different concepts which overloaded the term partition.

The term partition is reserved to the concept of a TDAQ partition. An equivalent formulation
for a TDAQ partition is that the TDAQ system is required to be capable to run as multiple (fully
functional3), possibly concurrent, instances each operating on sub-sets of the ATLAS detector.

1.That is the segment is capable of receiving commands from the TDAQ control system.

2.A segment cannot be a resource insofar as it is not the “smallest”, a resource cannot be a segment
insofar as it cannot be operated. With the exception of the ROD crate, which may be seen both as a
segment and a partition, a partition cannot be a segment since it is not the “smallest” and a segment
cannot be a partition since, being the “smallest”, it cannot take data.
3.That is the complete functionality of the DAQ system is available to run a subset of the detector.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

26 3 System Operations

There exists one TDAQ Partition which covers the whole ATLAS TDAQ system. That TDAQ
Partition is used for production data taking at the experiment. A TDAQ Partition always in-
cludes some FE elements of one or more sub-detectors in order to provide data. In one excep-
tional case, that of the DAQ partition, the TDAQ partition may include simulated input data
instead of FE elements. A TDAQ Partition may stop at the level of one (or more) ROD crate(s)
(ROD Crate DAQ), otherwise it will always include parts of the Event Building and parts of the
Event Filter farm (i.e. it will always include a vertical slice of the DAQ system).

Operations on partitions.

3.4 Operations outside a run

Define what are the operations allowed when a run is stopped or when LHC is off. “Define”
should include: the purpose of the operation, the actors, the expected result, the effect on
TDAQ.

Initialisation, configuration.

Operations on partitions: split/join

A backup document with use cases would be useful (if can be done).

This section was moved with respect to the original layout so as to come AFTER the section on partition-
ing (since some of the operations might be done on partitions). It was also promoted one level up in the
section hierarchy

3.5 Error/Fault reporting/handling strategy

Brief description of the global strategy here as the details are in Chapter 6. Emphasis should be given to 1)
what TDAQ does when an internal error happens and 2) what TDAQ does when a fault happens outside
TDAQ (but the fault affects the operation of the system).

The ATLAS TDAQ system will consist of a large number of, hardware and software, elements: a
few thousand processors each running possibly several software processes. Today we do not
have available a model for the MTTF of the full TDAQ or any of its components. However it is
safe to assume that malfunctioning1 in a system of such a size may happen at a non negligible
rate. Under this assumptions and taking into account the requirement to maximise the TDAQ
up-time we distinguish two types of behaviour:

1.Hardware fault (fan, power supply, disk, etc.) or software fault (process aborting).

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

3 System Operations 27

• the fault happens in an element such that this latter can be removed from the running
system without affecting the physics. It is the responsibility of the sub-system, to which
the element belongs, to remove the element transparently without stopping the run.
When necessary the sub-system will tag subsequent event with a “quality flag” value
which marks events as “degraded”. Examples are: a ROD, a ROB (both require the
tagging with a “quality flag”), a LVL2 or an EF processor or may be an entire farm
(which do not require the quality flag).

• the fault happens in an element which is either essential (e.g. the DFM or the L2SV
today) or such that it must respond to a high rate of requests (e.g. the ROS today). A
fault in one of these elements is either fatal for the run or it may potentially generate a
chaotic transient period (which may also be fatal to the run). The “simpler” fault
tolerance defined in the first bullet above is not applicable. These TDAQ elements do
have to be designed with a higher degree of reliability.

3.6 Data Bases

What has to be stored permanently? at least give some broad categories and the source of the
data. Then list what is the required functionality of the data base system(s). For example data
related to configuration, conditions, monitoring, etc.

Material from this section should come from the efforts going on to collect requirements on data bases.

3.7 References

3-1 GIWG. Run and States

3-2 GIWG. Partitioning

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

28 3 System Operations

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

4 Physics selection strategy 29

4 Physics selection strategy

This chapter provides an overview of the strategy for the online selection of events in ATLAS.
The challenge faced at LHC is to reduce the interaction rate of about 1 GHz at the design lumi-
nosity of online by about 7 orders in magnitude to a rate of O(100 Hz) going to
mass storage. Although the emphasis in this document will be on the contribution of the HLT to
the reduction in rate, the final overall optimization of the selection procedure has to involve fur-
ther tuning of the cuts at LVL1 as well.

The first section describes the requirements defined by the physics program intended to be
studied by ATLAS, followed by a discussion of the approach taken for the selection at the HLT
(and actually LVL1 as well). Next, a brief overview of the major selection signatures and their
relation to the various components of ATLAS is given. Then, an overview of the various parts of
the trigger menu for steady state running at an initial luminosity of is present-
ed, together with a discussion of the expected physics coverage. This is followed by a descrip-
tion of how changes in the running conditions are going to be addressed, before finally ideas for
the strategy of determining trigger efficiencies from data alone are presented.

4.1 Requirements

The ATLAS experiment has been designed to cover a large part of the physics potential expect-
ed for proton-proton collisions with a center-of-mass energy of 14 TeV at LHC. Amongst the
primary goals are the understanding of the origin of the electroweak symmetry breaking (which
might manifest in the observation of one or more Higgs bosons) and the search for new physics
beyond the Standard Model, where for the latter it will be of utmost importance to be as open as
possible to new processes, which are not yet modelled as of today. In addition, precision meas-
urements of processes within (and outside of - if found) the Standard Model are to be made.
These precision measurements will provide a very important consistency tests for any signals of
new physics to be found. An overview of the variety of physics processes and the expected per-
formance of ATLAS can be found in [4-1]. Most of the selection criteria used in the assessment
of the physics potential of ATLAS are based on simple cuts, requiring mostly several high pT
objects, such as charged leptons, photons, jets (with or without b-tagging) and missing trans-
verse energy.

The online event selection strategy has to define the proper criteria to efficiently cover the phys-
ics program foreseen for ATLAS, while at the same time provide the required reduction in event
rate at the HLT. As discussed later, guidance on the online selection criteria has been obtained
from the analysis cuts studied so far, reducing these even further to a simple set of very few sig-
natures required for an event to be accepted.

1 10× 34cm 2– s 1–

2 10× 33cm 2– s 1–

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

30 4 Physics selection strategy

The online selection at LHC is faced with a
huge range in cross-section values for various
processes, as shown in Figure 4-1. The interac-
tion rate is dominated by the inelastic part of
the total cross-section with a value of about
70 mb. The inclusive production of b-quarks
occurs with a cross-section of about 0.6 mb,
corresponding to a rate of about 6 MHz for de-
sign luminosity. It is worth noting that the
cross-section for inclusive W production (in-
cluding the branching ratio for the leptonic
decays) leads at design luminosity to a rate of
about 2 kHz. However the rate of some rare
signals will be much smaller, e.g. the rate for
the production of a Standard Model Higgs bo-
son with a mass of 120 GeV for the (rare) de-
cay mode into two photons will be below 10-

3 Hz. The selection strategy has to ensure that
such rare signals will not be missed while at
the same time reducing the output rate of the
HLT (to mass storage) to an acceptable value.

Furthermore, the LHC environment at design
luminosity implies the presence of about 20 in-
elastic events per bunch crossing, in addition
to the possible event of interest.

The online selection thus has to provide a very efficient and unbiased selection, which should
not spoil the excellent performance of the ATLAS detector. It should be extremely flexible and
redundant to operate in the challenging environment of the LHC, providing also a very robust
selection. It is highly desirable to reject fake events or background processes as early as possible
in order to optimize the usage of the available resources. While presently the selection is based
on rather simple criteria (however making use of the ATLAS capabilities to reject most of the
fake signatures for a given selection), it is also thought to be indispensable to have additional
tools for the online selection at our disposal.

4.2 The approach

In order to guarantee as best as possible openness to new physics, the approach taken is based
on the emphasis of using inclusive criteria for the online selection, i.e. having signatures mostly
based on single and di-object high-pT triggers. Here high pT refers to objects such as charged
leptons with transverse momenta in the range of O(10 GeV). The choice of the thresholds has to
be made such that a good overlap with the reach of the Tevatron (and other existing colliders) is
guaranteed. Complementing this high pT selection to enlarge the ATLAS physics potential re-
quires to also have access to signatures involving more exclusive selections, using e.g. charged
particles with transverse momenta of O(1 GeV) for the study of b-hadron physics.

The selection at the HLT will be based on the information already obtained at LVL1 and will ex-
ploit the complementary features of the LVL2 trigger and the EF selection. At LVL2, a fast rejec-
tion has to be achieved, using dedicated algorithms (to fulfil the latency constraints) needing

Figure 4-1 Cross-section and rates (for a luminosity
of) for various processes in proton-
(anti)proton collisions, as a function of the center-of-
mass energy.

1 10× 34cm 2– s 1–

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

4 Physics selection strategy 31

mostly only a few per cent of the event data (via guidance using the Region-of-Interest concept
from LVL1). The selection signatures are to be refined at the EF, where the full event will be
available for analysis, using more refined calibration and alignment parameters with less con-
straints on the latency. Furthermore, the EF will provide classification for the accepted events, in
order to ease the offline analysis of the events.

Although the primary part of the selection will be based on mostly simple and inclusive signa-
tures (to allow for future optimization), more refined selection tools have to be at the disposal.
These include the usage of more refined algorithms (e.g. b-tagging of jets) or the application of
more exclusive criteria, e.g. in order to enrich the available samples for certain physics process-
es. The chosen approach should be capable of supporting the ATLAS physics program over the
full lifetime of the experiment.

Furthermore, it is highly desirable to select events with complementary and overlapping crite-
ria, in order to avoid as much as possible biases due to the online selection.

4.3 Selection objects

The selection objects defined for the HLT can be based on the information of all sub-detectors of
ATLAS, at the full available granularity. As mentioned above, the difference in definition of
these objects between LVL2 and the EF will mostly refer to the complexity of the algorithm in-
terpreting the raw data and the detail and level of accuracy for the alignment and calibration in-
formation used. In addition, the EF has the full event at disposal for the search for these objects.

ATLAS, as a multi-purpose detector, will have charged particle tracking (in the so called Inner
Detector) coverage in the pseudo-rapidity region of |η| < 2.5 (inside a solenoidal field of 2 T)
and fine-grained calorimeter coverage (esp. in the electromagnetic compartments) up to
|η| < 3.2. The calorimeter coverage extends up to |η| < 4.9 for the measurement of missing
transverse energy and forward jets. The coverage of the muon system extends up to |η| < 2.4
(for the trigger chambers) and up to |η| < 2.7 for the precision muon chambers. More details on
the various components and their expected performance can be found in [4-1].

The following overview briefly summarizes the most important selection objects foreseen to be
used at the HLT, where more details on the concrete implementation of the selection algorithms
and their expected performance is to be found in CHAPTER 13.

• Electron: the selection of electrons will include a detailed shower shape analysis in the
fine-grained calorimeters, a search for high pT tracks and matching between the cluster
and track(s) found. Further refinement is possible via the identification of Bremsstrahl-
ung events and the application of isolation criteria.

• Photon: the selection of photons will be also based on a detailed calorimeter shower
shape analysis, including the requirement of isolation, and possibly on the use of a veto
against charged tracks (after conversions have been identified).

• Muon: the muon selection will make use of the stand-alone muon system to determine
the muon momentum and its charge. A refinement of this information can be obtained by
searching of tracks in the Inner Detector and matching of these candidates with the stand-
alone muon track segment. Also for muons, isolation criteria can be required.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

32 4 Physics selection strategy

• Tau: the selection of taus (in the hadronic decay mode) will use the calorimeter shower
shapes to identify narrow hadronic jets. These can be matched to one or more tracks
found in the Inner Detector.

• Jet: the jet selection will based on calorimeter information, which might be refined by in-
cluding the information from matching charged tracks as well.

• b-tagged jet: the selection will be based on an already defined jets, where the associated
tracks found in the Inner Detector are used to search for e.g. large values of the impact pa-
rameter or for the presence of secondary vertices, as well as for soft (i.e. low pT) leptons.

• : the definition of missing transverse energy will be based on the full calorimeter
data, allowing for improvements via the inclusion of the information from charged parti-
cle tracks and from observed muons.

• total ΣET: again the calculation will be based on the full calorimeter information, with ad-
ditional corrections being possible from charged tracks and reconstructed muons. A re-
fined definition of the total ΣET can be made using only reconstructed jets.

In the following, a nomenclature of the type ‘NoXXi’ will be used, where ‘o’ indicates the type
of the selection (‘e’ for electron, ‘γ’ for photon, ‘µ’ for muon, ‘τ’ for a τ hadron, ‘j’ for jet, ‘b’ for a
b-tagged jet, ‘xE’ for missing transverse energy, ‘E’ for total transverse energy and ‘jE’ for the to-
tal transverse energy as obtained from jets only). The threshold on the transverse energy (or mo-
mentum) is given by ‘XX’ (in GeV). The required multiplicity of the object is indicated by the
digit ‘N’ and the presence of an isolation requirement by the letter ‘i’. The thresholds listed refer
to the true value, and the efficiency will depend on the actual implementation of the algorithm
and the criteria applied, examples of which are given in CHAPTER 14.

As an example for the case of a more exclusive selection (requiring a more complex approach) is
given by the case of b-hadron physics, where it is necessary to identify (semi-)exclusively the
appropriate decay. This requires the identification of low pT charged hadrons and leptons (elec-
trons and muons) and might not always be able to rely on guidance to the HLT from LVL1. The
starting point at LVL1 will be given by the presence of at least a low pT muon.

4.4 Trigger menus

In this section, the present understanding of the trigger menu for a steady state running at an
initial peak luminosity of is presented. Several parts of this trigger menu are
distinguished and discussed separately:

• un-prescaled physics triggers, which form the backbone of the online selection and are
chosen to guarantee the coverage of a very large fraction of the ATLAS physics program,

• pre-scaled physics triggers, which will extend the physics coverage for ATLAS (e.g. by
having inclusive selections with lower threshold to enlarge the kinematic reach or by in-
troducing more exclusive selections),

• dedicated monitor and calibration triggers (not already contained in one of the above
items) to better understand the performance of the ATLAS detector, based on physics
events not needed otherwise for physics measurements.

ET
miss

2 10× 33cm 2– s 1–

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

4 Physics selection strategy 33

The description of these three parts of the presently foreseen trigger menu is followed by a dis-
cussion of the physics coverage achieved, including indications on how strongly the acceptance
for selected physics processes depends on the actual choice of thresholds.

The derivation of the trigger menus and the actual values for the thresholds is following a strict
procedure, starting from the physics analysis requirements, assessing the rejection capabilities
at the various stages of the selection and at the end arriving at the estimates for the total HLT
output bandwidth. This procedure has to be done obviously in several iterations, where also al-
ready existing information, e.g. from studies of the LVL1 trigger (see [4-3]) or from past studies
of the HLT performance, as documented e.g. in [4-2], in taken into account.

Not discussed in this document are possible trigger selections dedicated to the study of forward
physics or heavy ion interactions, as these additional aspects of the ATLAS physics potential are
presently under investigation. It is expected that the excellent capabilities to identify high pT
signatures will also play a crucial role. Furthermore it should be noted that the menus are going
to involve continuously, taking into account a more refined understanding of the detector capa-
bilities and progress made in particle physics in the understanding of the Standard Model and
the outcome of future searches for new physics before the start of the LHC.

A comprehensive assessment of the expected rates for the trigger menu will be given in CHAP-
TER 13.N, both for LVL1 (together with the corresponding trigger menu at this level) and for the
HLT (i.e. rate to mass storage), including the expected total bandwidth of the accepted events to
mass to storage.

4.4.1 Physics triggers

An overview of the major selection signatures needed to guarantee the physics coverage for the
initial running at a peak luminosity of is shown in Table 4-1.

A large part of the physics program will rely heavily on the inclusive single (and di-) lepton
triggers, involving electrons and muons. Besides selecting Standard Model events such as the
production of W and Z bosons, gauge boson pair production, tt production (except the fully
hadronic decay) and several decay modes of a Standard Model (and MSSM) Higgs boson(s),
they also provide sensitivity to new heavy gauge bosons (W’, Z’), to super-symmetric particles,
large extra dimensions (via the Drell-Yan di-lepton spectrum) and to particle decays involving
τ’s (via their leptonic decay).

The inclusive and di-photon triggers will select a light Higgs boson via its decay H --> γγ. The
coverage for super-symmetry is extended by using the jet + missing transverse energy signa-
tures as well as multi-jet selections, where the latter are especially relevant in case of R-parity vi-
olation. The inclusive and the di-jet trigger will be used in the search for new resonances
decaying into two jets. Further sensitivity to super-symmetry at large values of tan β will be
provided by signatures involving a hadronic τ selection.

Rare b-hadron decays and B-decays involving final states with a J/ψ are selected by a di-muon
signature (requiring opposite charges) and additional mass cuts.

2 10× 33cm 2– s 1–

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

34 4 Physics selection strategy

4.4.2 Pre-scaled and exclusive physics triggers

In Table 4-2 a prototype for additional contributions to the trigger menu in the form of pre-
scaled physics triggers is given. These triggers are needed to extend the physics coverage of the
online selection by extending on one hand the kinematic reach of various measurements to-
wards smaller values e.g. of the transverse momentum in a process, and as well to include fur-
ther selections by using more exclusive criteria.

A typical example for the application of these trigger selections is the measurement of the jet
cross-section over the full kinematic range, starting from the lowest achievable ET values up to
the region covered by the un-prescaled inclusive jet trigger.

A second example is given by the extension of the selection for B-hadron physics to involve
more decay modes. As discussed in more details already in [4-1] and [4-2], ATLAS offers the

Table 4-1 Trigger menu, showing only un-prescaled physics triggers. The notation for the selection signatures
is explained in Section 4.3.

Selection signature Examples for physics coverage

e25i W->lv, Z->ll, top production, H->WW(*)/ZZ(*),
W’,Z’

2e15i Z->ll, H->WW(*)/ZZ(*)

µ20i W->lv, Z->ll, top production, H->WW(*)/ZZ(*),
W’,Z’

2µ10 Z->ll, H->WW(*)/ZZ(*)

γ60i direct photon production, H->γγ

2γ20i H->γγ

j400 QCD, SUSY

2j350 QCD, SUSY, new resonances

3j165 QCD, SUSY

4j110 QCD, SUSY

τ60 charged Higgs

µ10+e15i H->WW(*)/ZZ(*)

e20i+xEXX W->ev

τ35+xE45 W->τv, Z->ττ , SUSY at large tan β

j70+xE70 SUSY

xE200

E1000

jE1000

2µ6 + µ+µ- + mass cuts rare B-decays (B ->µµX) and B->J/ψ (ψ')X

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

4 Physics selection strategy 35

possibility to perform several measurements of CP-violation in the b-hadron system. The selec-
tion strategy relies on selecting bb production via the semi-muonic decay of one of the b-quarks
and then to semi-exclusively reconstruct selected decays, which involves the (possibly) unguid-
ed search for rather low pT charged particles.

The pre-scale factors to be applied to most of the selections shown in Table 4-2 will have to be
determined on the basis of the required statistical accuracy for the given application, taking into
account the total available bandwidth. Furthermore, the ranges for the thresholds are to be seen
as indicative only, the aim will be to cover the widest possible range, i.e. extending the coverage
from the values of the nominal un-prescaled selection down to the lowest possible one for a giv-
en signature.

In the beginning of the data taking, it is essential that for all triggers the full detector will be rea-
dout to mass storage, in order to have the full spectrum of information available. It is however
clearly envisaged, that a later stage some of the above pre-scaled triggers might no longer re-
quire the full detector information to be collected and thus more bandwidth could be made
available for further selection criteria.

Table 4-2 Examples for additional, pre-scaled or exclusive physics triggers

Selection signature Physics motivation

single jets (8 thresholds between 20 and 400 GeV) inclusive jet cross-section

di-jets (7 thresholds between 20 and 350 GeV)

three jets (6 thresholds between 20 and 165 GeV)

four jets (5 thresholds between 20 and 110 GeV)

single electrons (4 thresholds between 5-25 GeV) inclusive electron cross-section

di-electrons (2 thresholds between 5-15 GeV)

single muons (4 thresholds between 5-20 GeV) inclusive muon cross-section

di-muons (2 thresholds between 5-10 GeV)

single photons (6 thresholds between 10-60 GeV) inclusive photon cross-section

di-photons (2 thresholds between 10-20 GeV)

taus (3 thresholds between 25 and 60 GeV)

di-tau (thresholds TBD) Z --> ττ selection

xE (5 thresholds between 45 and 200 GeV)

E (3 thresholds between 400 and 1000 GeV)

jE (3 thresholds between 400 and 1000 GeV)

µ + γ (thresholds TBD)

µ8 + B-decays

b-jet (threshold TBD)

filled bunch crossing random trigger minimum bias events, trigger efficiency monitor-
ing

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

36 4 Physics selection strategy

4.4.3 Monitor and calibration triggers

The selection signatures presented in Table 4-1 and Table 4-2 will already provide a huge sam-
ple of physics events, which will be of extreme importance for the understanding (and continu-
ous) monitoring of the detector performance. At LHC, especially the leptonic decay of the
copiously produced Z-bosons will be of great help, e.g. to determine the absolute energy scale
for electrons and to intercalibrate the electro-magnetic parts of the calorimeter (using Z --> ee).
The muonic decay will allow to set the absolute momentum scale both in the Inner Detector as
well as in the muon system. In addition, the inclusive electron and muon triggers will select tt
production (via the semi-leptonic decay of one of the top quarks). This sample will allow to de-
termine the jet energy scale (via the hadronic decay to two jets of a W boson from the t decay)
and to determine the b-tagging efficiency.

Furthermore, samples of inclusive electrons will be used to understand the electromagnetic en-
ergy scale of the calorimeter, to perform alignment of the Inner Detector, to understand the en-
ergy-momentum matching between the Inner Detector and the calorimeter. Samples of
inclusive muons are important as well for the Inner Detector alignment, to study their energy
loss in the calorimeters and to understand/align the muon detectors. The calorimeter inter-cali-
bration (especially for the hadronic part) will benefit from the use of inclusive (di-)jet samples.

However, there will be further requirements from the sub-detectors of ATLAS to collect samples
of events for calibration, alignment and monitoring purposes. Some examples for such applica-
tions are:

• FILL IN HERE AND IN THE TABLE

Table 4-3 Examples for specific monitor and calibration triggers, based on physics events, which are not cov-
ered in Table 4-1 and Table 4-2

Selection signature Example for application

random trigger zero bias trigger

unpaired/empty bunch crossing random trigger background monitoring

e25 loose cuts

e25 no isolation

µ20 loose cuts

µ20 no isolation

γ60 loose cuts

γ60 no isolation

τ60 loose cuts

2µ + Υ mass

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

4 Physics selection strategy 37

These triggers give also explicit examples for selections which do not require always the full de-
tector information to be read-out for mass storage. For some monitoring aspects, it could be
even envisaged to not store any raw data, but just the result of processing the event at the EF
(this would obviously only be possible after a stable operation of the detector and the machine
has been reached).

4.4.4 Physics coverage

In the following, an overview of the major physics aspects foreseen by ATLAS will be given and
the coverage achieved by the trigger menus as described above will be discussed. Special em-
phasis is given on describing the sensitivity to the actual value of the thresholds used in the se-
lection signatures and to the redundancy achieved by the sets of signatures proposed.

As an example, the search for a Standard Model Higgs boson H in the decay mode to H -> bb
will be discussed, where H is produced in association with a tt pair. The proposed selection cri-
teria for this mode involve the requirement of a lepton from the semi-leptonic decay of one of
the top quarks. In [4-1], the study has been based on the assumption of a pT threshold for both
the electron and the muon case of 20 GeV. The example in Table 4-4 shows the impact of raising
one or both of these thresholds on the expected significance [4-4] for signal observation.

An overall optimization (which will be continued throughout the lifetime of the experiment)
has to take into account the present understanding of physics, the effect of the foreseen thresh-
olds on the acceptance for know (and unknown) physics processes, the rate for the selection (as
the rejection can not be infinite due to e.g. the copious production of W bosons at LHC, which
contribute via the leptonic decay to true electron and muon triggers), the inclusiveness of the se-
lection (where one should note that a more exclusive selection does not necessarily imply a sig-
nificantly reduced output rate -- as many final states will have to be considered in order to
achieve good coverage) and the available resources.

4.5 Adaptation to changes in running conditions

Various effects will lead to changes in the running and operational conditions for the online se-
lection, to which an efficient adaptation is needed. This is on one hand the drop of the luminos-
ity during a fill of the LHC, on the other hand one has to foresee changes in the background
conditions from the machine or changes in the detector performance, which will affect the selec-
tion. The strategy has to foresee as best as possible means to react to these changes and to keep
the online selection robust.

Table 4-4 Example of loss in significance for the associated production of ttH

pT(e) > 20 GeV 25GeV 30 GeV 30 GeV 35 GeV

pT(µ) > 20 GeV 20 GeV 20 GeV 40 GeV 25 GeV

1 0.98 0.96 0.92 0.92S B⁄

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

38 4 Physics selection strategy

4.5.1 Luminosity changes

During the life time of a machine fill of about 14 hours, the luminosity will drop by a factor of
about 4. In order to profit from the available bandwidth in the HLT system, it should be fore-
seen to aim for a constant output rate of the HLT to mass storage. This could be achieved e.g. by
including more trigger selections in the trigger menu, by adjusting pre-scale factors to fill up the
available bandwidth with more selections using lower thresholds, with more exclusive selec-
tions or even by changing (i.e. lowering) the thresholds of the un-prescaled physics triggers. In
this way, the physics coverage of ATLAS will be extended during a machine fill. One example is
the case of B-hadron physics, where the un-prescaled trigger menu presented above is so far re-
stricted to select only final states involving B-decays leading to at least two oppositely charged
muons. As the luminosity drops below the peak value, other decay modes (e.g. fully hadronic
ones or decays involving two low pT electrons) can be added.

However one has to take into account that the sizeable change in the luminosity during a ma-
chine fill will imply changes in the average number of pile-up events present in the same bunch
crossing, which might influence the optimal choice of threshold values (or isolation cuts) for
various criteria in the definition of the selection objects and more studies are needed to assess
whether simple changes of pre-scale factors are sufficient.

4.5.2 Background conditions

Furthermore, one will have to foresee adjustments to changes in the operating conditions, such
as sudden increases in backgrounds or the appearance of hot channels, leading to certain trig-
gers firing at a larger rate than acceptable. Furthermore, machine related background might in-
crease suddenly and impact on the rate for certain selection signatures. Here, the first measure
is most likely going to be either to completely disable this selection or to significantly increase
the pre-scale factor.

4.5.3 Mechanisms for adaptation

From the operational point-of-view, it must be rather simple (and fast) to adjust the value for
the pre-scale factors (and to include further trigger selections), changes to the threshold value
might imply more complex re-initialisation procedures. Changes in the pre-scale factors could
be done dynamically in an automated fashion (e.g. updating these number every N minutes),
however it might be preferable to perform these changes less frequently in order to simplify the
calculation of integrated luminosities for cross-section measurements.

The above list of changes in conditions is obviously incomplete and there will be many (as of to-
day yet unknown) outside causes for changes to a stable operation, to which the online selection
has to react and adapt, in order to preserve the physics coverage of ATLAS.

4.6 Determination of trigger efficiencies

An important aspect will be the capability to determine (as far as possible) the efficiencies for
the above online selections from data alone. In this section, only a few basic ideas will be de-
scribed, more quantitative details need to be worked out further. In addition, no explicit distinc-

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

4 Physics selection strategy 39

tion between LVL1 and the HLT selections will be made, it is obvious that the efficiency
determination will have to be done separately for each trigger (sub-)level. Furthermore, it is
mandatory that the efficiency of the selection is monitored carefully throughout the lifetime of
ATLAS, requiring that most of the lower threshold triggers needed for this are kept running all
the time and that sufficient statistics is accumulated with these. In the following, an qualitative
overview of various possible procedures is given. The importance will be on trying to deter-
mine the efficiencies in several ways, in order to minimize systematic uncertainties.

4.6.1 Bootstrap procedure

One possibility will be a bootstrap procedure, starting off with a selection of minimum bias
events and using those to study the turn-on curve for very low ET triggers on jets, electrons,
photons, muons and so on. Next, the turn-on curves for e.g. electron triggers with higher ET
thresholds are studied using samples of events selected by an electron trigger with a lower (and
thus already understood) threshold (and the same for all other object types).

4.6.2 Orthogonal selections

For the HLT, it will also be possible to foresee orthogonal (i.e. completely independent) selec-
tions in order to study the trigger efficiency of a particular step in the selection sequence, e.g. by
using a sample which requires the presence of high pT track in order to study the calorimeter (or
the muon) trigger selections in more detail. Given the absence of a track trigger at LVL1, this
will not be possible for the first stage of the selection. It could be envisaged however to use e.g.
events selected by a muon trigger to study the calorimeter trigger response at LVL1 (using
events where a jet is balancing a Z-boson, decaying to two muons).

4.6.3 Di-object selections

A further possibility will be the use of di-object selections (e.g. the plentiful produced Z --> ll
decays) which have been selected online by a single object requirement and to study the trigger
response for the second object (not required for the online selection). Here also other samples of
resonances such as the J/ψ or the Υ might prove very useful for the region of lower transverse
momenta.

4.6.4 Required statistics

It cannot be emphasized enough that the amount of data needed to perform a proper under-
standing of the online selection is not going to be negligible in the start-up and throughout the
lifetime of ATLAS, and will play an important role in assuring the potential of the experiment
for discoveries and precision physics measurements. A more detailed assessment of the expect-
ed needs (before the start-up of ATLAS) should be done in the next years, presently a fraction of
10% is attributed to these triggers, which might not be sufficient and is clearly smaller than the
ones presently used by running experiments.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

40 4 Physics selection strategy

4.7 Summary

An overview of the requirements and the basic principles for the online event selection strategy
for ATLAS has been given. In order to maximise the potential of ATLAS for (presently) unfore-
seen physics, the online selection will follow an as inclusive approach, based mostly on high PT
objects.

Details on the implementation of this strategy in terms of the software framework to perform
the selection can be found in CHAPTER 9.N. In CHAPTER 13, more information on selection al-
gorithm implementations and their performance in terms of signal efficiency and background
rejection can be found. Finally, CHAPTER 14.N addresses the issue of system performance of
the online selection, presenting the present understanding of the resources (e.g. CPU time, net-
work bandwidth) needed to implement the selection strategy presented in this chapter.

4.8 References

4-1 ATLAS Detector and Physics Performance TDR.

4-2 ATLAS HLT, DAQ and DCS Technical Proposal.

4-3 ATLAS LVL1 TDR.

4-4 E. Richter-Was, private communication

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

5 Architecture 41

5 Architecture

The purpose of the chapter is to describe the top level architecture of TDAQ, in terms of

its place with respect to the other parts of ATLAS, as well as systems and services external to ATLAS,

how the system is organised: functionally, in terms of sub-systems and in terms of more abstract ele-
ments,

a generic architecture with a a definition of the abstract components that are visible at the architectural
level

how sub-systems map onto the generic architecture (“views”).

how the scalability and partitioning can be performed and

finally it proposes a baseline architecture expressed by the realisation of the abstract components.

DCS is considered, as regards this chapter, as a black box with interfaces to TDAQ and external systems.
The internals of DCS do not belong to this chapter.

5.1 TDAQ context

5.2 Context Diagram

The ATLAS TDAQ context diagram is shown in Figures 5-1. The LVL1 trigger provides LVL2
with region-of-interest(RoI) and other data needed to guide the LVL2-trigger data selection and
processing; this interface is discussed in detail in part 2. The Timing, Trigger and Control (TTC)
system provides signals associated with events that are selected by the LVL1 trigger.
ReadOutDrivers(RODs), associated with the detectors, provide event fragments for all events
that are selected by the LVL1 trigger. In addition, the LVL1 system contains RODs which pro-
vide data to be read out for the selected bunch crossings. The LVL1 trigger system, the TTC sys-

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

42 5 Architecture

tem and the ROD systems of the detectors all need to be configured by the DAQ system, for
example at the start of each run. These components are shown in the top part of the diagram.

Figure 5-1

Interfaces to other external systems are also illustrated in Figure 5-1. These connect to the LHC
machine (e.g. to exchange information on beam parameters), to the detectors (e.g. to control
voltages), to the experimental infrastructure (e.g. to monitor temperatures of racks), and to the
CERN technical infrastructure.

The remaining interfaces relate to long-term storage of data that must also be accessed for off-
line analysis of the event data. For events that are retained by the high level triggers, the event
data have to be stored for offline analysis. In addition, a large amount of non-event data has to
be stored: alignment and calibration constants, configuration parameters, etc. Not shown in the
figure is the importation of programs from the offline software for use by the high level triggers.

5.2.1 TDAQ Interfaces

The ATLAS TDAQ system interfaces to a variety of other subsystems inside ATLAS as well as
external systems which are not under the experiments control. The following describes these in-
terfaces in terms of

• Partners involved (TDAQ subsystem and non-TDAQ system)

• Responsibilities for the interface on both sides

• Data exchanged via the interface.

• Pointers to documentation on interfaces including data formats.

Configuration
data

DCS
messages

DCS
messages

Non-event
data

Event data

DCS
messages

DCS
messages

Configuration
data

Configuration
data

LVL1 trigger
signals

Data logging of event data for
offline analysis

ROI and other data
needed by LVL2

Event data
fragments

Read-Out Drivers (RODs) of
detectors (and LVL1 trigger)

LVL1 trigger processors

High-Level Triggers,
DAQ, DCS

TTC system

Offline databases for non-
event data

Experimental
infrastructure

CERN technical
infrastructure

LHC machine

Detectors

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

5 Architecture 43

The interfaces are distinguished into two classes, those to other parts of ATLAS and those to ex-
ternal systems.

5.2.1.1 TDAQ interfaces to ATLAS

5.2.1.1.1 Level 1 Trigger

Although technically part of the ATLAS TDAQ, the Level 1 trigger is here seen as an external
subsystem from the point of view of the DAQ and the HLT components.

The sole interface to the Level 1 trigger is provided through the RoIBuilder. It connects to both
the CTP and the Calorimeter and Muon Level 1 triggers and receives direct input from them.
This information is combined on a per event basis inside the RoIBuilder and passed to the Level
2 system.

The physical interface is provided by an SLink. There are inputs from nine different sources into
the RoIBuilder. The interface has to run at full LVL1 speed, i.e. 75 kHz. Data flows from the Lev-
el 1 system to the RoIBuilder while the SLink interface provides only flow control information
in the reverse direction. Asserting XOFF is the only way for the RoIBuilder to stop the trigger.
The specification of the interface is described in Ref[L1L2Interface].

Only one partition at a time can include the Level 1 and Level 2 trigger. This will be the default
trigger during a physics run.

5.2.1.1.2 Detector specific triggers

For testbeams, installation and commissioning as well as calibration runs it will be necessary to
trigger the data acquisition for a subset of the full system independent from Level 1 and Level 2
and in parallel with other ongoing activities. These triggers are referred to as detector specific
triggers. For event building a Data Flow Manager (DFM) per partition is assumed.

Any detector specific trigger will communicate via the TTC system with its corresponding
DFM. The DFM component therefore requires a TTC input and a mode where it will work inde-
pendent from Level 2. The details of how the trigger itself is implemented are left to the subde-
tectors. The DFM must be able to throttle the detector specific trigger via TTC.

5.2.1.1.3 Detector Front-ends

The detector front-ends provide the raw data for each event that Level 1 triggers on. The detec-
tor side of the interface is the Read Out Driver (ROD) while the TDAQ side is the Read Out
Buffer (ROB). The connection between the two is the Read Out Link (ROL).

From the point of view of the detector side the interface follows the SLink specification. Imple-
mentation details can change as long as the specification is followed and most RODs provide
room for a mezzanine card to hold the actual interface.

Data flows from the ROD to the ROBs, while only the SLink flow control is available in the re-
verse direction. This interface has to work at the full Level 1 accept rate, i.e. 75 kHz.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

44 5 Architecture

5.2.1.1.4 DCS

There is a two-way exchange of information foreseen between DCS and the rest of the TDAQ
system. DCS will report information to TDAQ about the status and readiness of various compo-
nents and TDAQ will both provide configuration information and issue commands related to
runs. DCS is also the only interface to all information regarding the LHC machine.

All this communication happens via mechanisms defined and provided by the Online Software.
ref[DCS-OSW communication packages].

5.2.1.1.5 Detector Monitoring (ROD Crate to Online SW)

5.2.1.1.6 Conditions Database

The conditions database will store all time-dependent status information of the system that is
important for reconstructing events. Components of the HLT/DAQ system will mostly write in-
formation into the database, but some like the Event Filter will also read from it.

The concrete interface to the conditions database is not yet defined. Assuming that the imple-
mentation is making use of a relational database a variety of communication mechanisms will
be available. It remains to be studied how accessing the conditions database will affect the HLT
performance itself and how frequently this will occur.

5.2.1.2 External interfaces

5.2.1.2.1 Mass Storage

Events that have passed the Eventfilter will eventually be written to mass storage. It is assumed
that this service itself is provided by the CERN computing division. In the current design the
Sub Farm Output (SFO) component produces a series of raw data files which are stored on disk
to provide local buffering if necessary (e.g. when the network connection to the CERN main site
is down). A separate process picks these files up and transfers them to the computing division.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

5 Architecture 45

The data files are stored in a well-defined format and libraries are provided to read these files in

offline applications.

5.2.1.2.2 LHC

All communication between the LHC machine and TDAQ is done via DCS. Therefore there is
no direct interface between any other TDAQ component and the LHC. The communication
mechanisms are described in the section on DCS.

5.3 TDAQ Organisation

The purpose of the section is to show how TDAQ is organised (the system as such, not necessar-
ily managerially) internally. The internal organisation is looked at from three perspectives: what
function are performed by TDAQ, how functions are associated to TDAQ blocks, and a very ab-
stract categorisation of internal elements. Generality (as opposed to implementation) and com-
plementarity of views is stressed.

5.3.1 Functional decomposition

The TDAQ system provides the ATLAS experiment with the capability of: moving the detector
data (physics events) from the detector to mass storage, selecting, between detector and mass
storage, those events which are considered of physical interest, controlling and monitoring the
whole experiment.

The following functions are identified:

Table 5-1 Overview of interfaces between TDAQ and other ATLAS or external systems.

Interface Data Rate Data Volume Data Type

LVL1 Trigger 75 kHz Trigger and RoI data

Detector specific trigger xx kHz Trigger

Detector Front-ends 75 kHz 135 GByte/s Raw data

Detector Monitoring few Hz few MByte/s Raw data

DCS few Hz ?? Control information

Conditions Database ?? ?? System status

Mass Storage Interface 200 Hz 360 MByte/s Raw data + LVL2 and
EF results

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

46 5 Architecture

• Detector read-out: the data produced by one bunch crossing are stored in detector memo-
ries (RODs), an event is therefore split in a number of fragments: there are ~ 1600 of such
memories which have to be read-out at a rate of 75KHz into a set of TDAQ buffers (the
event memory for TDAQ).

• Movement of event data: once buffered event fragments have to be moved to the high
level triggers and, for selected events, to mass storage. This is a complex process which
involves both moving small amounts of data at the level-1 trigger rate (the region of inter-
est data for the level-2 trigger at 75 KHz) and the full event (i.e. ~ 1MB) at the rate of the
level-2 trigger (few KHz).

• Event selection: TDAQ is responsible to reduce the rate and the data volume to the man-
ageable amount of ~ 100MB/sec; this is achieved by a sophisticated, 2-level, trigger sys-
tem.

• Event storage: events selected by the high level trigger system are written onto perma-
nent storage for further offline analysis.

• Controls and monitoring: this refers to the capability of i) operating and controlling the
experiment (detector, infrastructure, TDAQ) and ii) monitoring the state and behaviour of
the whole of ATLAS.

5.3.2 TDAQ building blocks and sub-systems

The ATLAS TDAQ system is designed to provide the above functions in terms of the following
building blocks:

• Read-Out System (ROS): event data is buffered, by the ATLAS detectors, in the RODs;
each ROD holding a fragment of the whole ATLAS event. The ROD fragments are read by
TDAQ into its own buffers, the “Read-Out Buffers” (ROBs). Logically, but not necessarily
implementation-wise, there is an equal number of ROB buffers as there are ROD frag-
ments (indeed, see below, the level-2 trigger needs to access data at the level of the
individual ROD fragments). Event fragments are kept in the ROB buffers until they are ei-
ther moved downstream (accepted by the level-2 trigger) or they are removed from the
system (rejected by level-2). The depth of the ROB buffers is determined by the time need-
ed by level-2 to select events. The ROS provides individual event fragments, out of the
ROBs, to the level-2 trigger and to the event builder: in this latter case a further level of
buffering, multiplexing several individual ROBs into a single event builder input, may be
provided by the ROS.

• Level-2 trigger: the level-2 trigger, as detailed in XXXXX, uses a mechanism to selectively
read-out an event; that is, the level-2 trigger requests, as directed by the findings of the
level-1 trigger, a small fraction of the event fragments in order to take a decision on the ac-
ceptance/rejection of the event. The ROI mechanism, using input from level-1, defines
what fragments the level-2 trigger will need for a particular event. Appropriate fragments
are requested from the ROBs and used to decide on the acceptance or rejection of that
event. It is remarked that the level-2 trigger requests fragments on the basis of i) the level-
1 identifier and ii) the ROL number (as opposed to a ROB number).

• Event Builder: the event is kept in the form of many (~1600) parallel streams up to the de-
cision by the level-2 trigger. Any further reduction in the event rate needs working on the
complete event, hence the requirement for a component which merges all the fragments
of an event into a single place: the event builder.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

5 Architecture 47

• Event Filter (EF): another level of event rate reduction is provided by the event filter
which requests complete events from the SFI buffers and performs on them complex se-
lection algorithms.

• TDAQ controls: the function in charge of the control and supervision of the whole TDAQ
system; this includes the initialisation and configuration of the TDAQ components. It also
includes those ancillary functions, such as sharing (non event data) information between
components.

• Detector controls: it represents the function in charge of controlling and monitoring all as-
pects of the ATLAS detector; it also includes the function of initialisation and configura-
tion of the ATLAS detector.

• Monitoring: it is the part of TDAQ in charge of i) the (event data based) monitoring of the
experiment and ii) the operational monitoring of TDAQ.

Now explain that the work has been organised in terms of a dataflow, dcs, hlt, pesa, online sub-systems

For the purpose of the organisation of the development, the work has been organised in terms
of broad, function oriented, sub-systems:

• The dataflow sub-system: it is responsible for the development of the detector read-out
and data transport functions.

• The high-level trigger (HLT) sub-system: it is responsible for the development of the lev-
el-2 and event filter components. It is in turn organised in terms of

• HLT infrastructure: responsible for the development of the infrastructure necessary
to support the trigger and filter algorithms, and

• physics and event selection architecture (PESA): to achieve a coherent description
of the physics needs which will drive the strategy for the selection of events in
the ATLAS Trigger/DAQ system, with the most emphasis on the High Level
Trigger.

• The online software sub-system: it is responsible for the development of all the support-
ing software, such as the one related to controls, data bases, monitoring, etc.

• Detector Control System (DCS): it comprises the control of the subdetectors and of the
common infrastructure of the experiment and the communication with the services of
CERN (cooling, ventilation, electricity distribution, safety etc.) and the LHC accelerator

5.3.3 Component categories

Here we characterise the components of TDAQ in terms of broad categories of elements: buffers, proces-
sors, supervisors and networks. It will be indicated what buffers (decouple parts of TDAQ, smooth differ-
ences in performances between parts of TDAQ), processors (selection at HLT level, monitoring, control),
supervisors (L2SV, DFM) to control the flow of the data) and networks (transport the data) do in the sys-
tem.

In very broad terms the ATLAS TDAQ system is composed of

• Buffers: they are used to decouple the different parts of the system: detector R/O, level-2,
event builder and event filter. Because of the parallelism designed into the system, buffers
belonging to the same function (e.g. ROBs) are independent.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

48 5 Architecture

• Processors: to run event selection algorithms, to monitor and control the system. They are
organised in farms, groups of processors performing the same function.

• Supervisors: these elements coordinate the parallelism, in terms of assigning events to
processors and buffers, at the different levels: the level-2 trigger (RoIB and L2SV), the
event builder (DFM) and event filter.

• Communication systems: they connect buffers and processors to provide a path for trans-
porting event data or a path to control and operate the overall system. Communication
systems are present at different locations in the system, some of them are switching net-
works, others may be point to point links.

5.4 TDAQ generic architecture

Now we put together and refine what we have said in Section 5.3, "TDAQ Organisation". The generic
architecture is built upon and justified on the basis of that section. A backup document may be needed if
more detail is required.

5.4.1 Architectural components

This is the list of the components which are visible at the level of the architecture, the list should include
what is relevant in terms of functions, building blocks and abstract elements.Should include the functions
and components identified in Section 5.3, "TDAQ Organisation": ROD,..., RoIB, L2SV, online software
major components such as control, DB, etc. For each component the following information should be pro-
vided: a definition or purpose (i.e. its function), and required performance. This section is neutral with re-
spect to possible implementations. Why generic (and “unorthodox”) names such as RRC and RRM, ROB
instead of ROBin? The intent is to indicate that at that point in the system something is needed with a
certain functionality (to connect and possibly mpx ROLs to ROBs, etc.).

The general, implementation independent, ATLAS TDAQ architecture is presented. Note that we
have carried forward most of the design originally presented in the ATLAS TP (1994), DAQ/DCS/HLT
TP (2000); note were choices have been made (e.g. level-2 requesting data)

The architecture is presented in terms of the functional breakdown of the previous sections. Ref-
erence to chapter 2 is done to use/derive required performance figures (based on the design L1
rate of 75KHz, some reference to the expected behaviour at 100KHz as well?).

Detector read-out

ROL (Read-Out Link): the communication link out of the detector buffers (RODs). Each ROD
may have one or more ROLs; each ROL corresponds to one event fragment. The ROL is expect-
ed to transport data at a rate equal to the maximum event fragment size times the maximum
level-1 rate (i.e. XXX MB/sec).

RRC (ROD to ROB connection): the connection between the ROL and the ROB may be multi-
plexed, that is to say one or more ROLs may be connected to a single ROB. Hence a functional
element in the system which represents how ROLs are multiplexed into ROBs. Figures on re-
quired bandwidths

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

5 Architecture 49

ROB: the detector fragments are read out of the RODs and stored into TDAQ buffers; depend-
ing on the level of multiplexing provided by the RRC component, one or more fragments may
be stored into a single ROB for the same event. Figures on buffer depth; input and output bandwidth.

RRM (ROB to ROS Multiplexor): in order to reduce the number of connections into the level-2
and event builder networks it is possible to funnel a number of ROBs into a single component.
The RRM represents this ROB multiplexing capability. Give figures on multiplexing capability
(based on ROB output bandwidth).

ROS (Read Out System): a component for serving data to the level-2 and event builder. It may
also be used to introduce a further level of buffering before the event builder.

Level-2:

RoIB: the component which determines which fragments ought to be analysed by level-2 for a
particular event, based on information received from the level-1 trigger. (Note it runs at the L1
rate)

L2SV: The level-2 trigger supervisor (L2SV): the component which, for a given event accepted
by level-1, receives the information produced by the RoIB, assigns a L2PU to process the event
and inputs the L2PU with the information provided by the RoIB.

L2PU: the component which, using the information produced by the RoIB, requests event frag-
ments from the ROS, process them and produces a decision (accept/reject) for an event. The de-
cision is passed to the ROS in order for this latter to remove (from the ROS buffers) or forward
(to the final part of TDAQ, the event filter) the event.

L2N (level-2 network): the switching network used to connect all the ROSes, level-2 processors
and supervisors for the purpose of moving ROI data and level-2 decisions between the TDAQ
buffers, level-2 processors and supervisory components.Note that data and control share the
same network. Figures on expected bandwidths and rates.

Event Builder

DFM: the supervisory element which assigns an event, accepted by level-2, to an SFI.

EBN (Event Builder Network): the event builder will handle events at a rate of a few KHz; to
achieve this performance several events are built concurrently into many SFI’s by means of a
switching network which connects ROSes, SFIs and DFM. Note that data and (event builder)
control share the same network. Figures on expected bandwidths and rates

SFI: the buffer where a full event is built prior to being moved to the event filter for further se-
lection. Target performance ~ 70MB/sec.

Event Filter:

EFP (Event Filter Processors): A farm of processors, to run the algorithms; including possibly a
supervisory component to assign events, available in the SFIs, to event filter processors. Figure
on expected time/event.

EFN: A communication system connecting SFIs, event filter processing unit and SFOs. Note that
the issue here will be one of connecting a lot of processing units more than actual volumes of data (ratio
processing to communication).

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

50 5 Architecture

SFO: A set of memories, sub-farm output (SFO), to buffer the events accepted by the event filter
prior to writing the events to permanent mass storage. Again expect performance ~ 70 MB/sec

DCS (Detector Control System): at this level of architectural detail the detector control system is seen
as an unstructured entity which interfaces with the rest of TDAQ via the online network.

Online:

OSF (Online Software Farm): the farm of processors on which the TDAQ software services, such
as the run control and the monitoring facilities. A single partitions and the whole experiment
are operated out of this farm.

DBS (Data Base Servers): the set of servers used to hold the data bases.

OSN (Online Software Network): a network connecting the Online software farm, the detector
control system as well as the controller and supervisors local to the TDAQ components. A more
detailed organisation of this network, showing which TDAQ elements have a controller etc., is
provided below in the detailed component views. Some figures on expected performance and size of
the network.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

5 Architecture 51

The generic architecture is shown pictorially in Figures 5-2.

For missing details, one should refer to the “views” below to e.g. go into more details as regards their (the
view’s) parts. For example a ROB has a data flow view as buffer, but also a control view, a data base view.

The drawing has to be corrected to show LVL1 and its connection to the ROIB, the relationship L2SV/
DFM. Which one can do after we agreed upon the principle

5.5 TDAQ data flow architectural view

Specialise generic architecture for the purpose of Data flow.

Shall contain: functional decomposition into DF packages and sub-packages; interfaces and boundaries
between DF packages and sub-packages; main use-cases realisation; “Event control and event flow” view
which will include the rates and data volumes between DF packages and sub-packages (including type of
communication).

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

52 5 Architecture

5.6 TDAQ controls and supervision view

Specialised generic architecture for the purpose of control and supervision (eg show local controllers).

Includes both DCS and Online controls.

Remarks to this view:

This view has been chosen to illustrate the relation between the TDAQ Control and the DCS Control and
explanations and some reasons for choosing this view are listed below.

• Arrows represent the direction of command flow.

• Lines without arrows represent information exchange which is vital for correct decision making of
the controlling master. Component boxes represent logical entities.

• Systems external to Atlas are shown where they have a vital importance to the experiment control.
The controlling master must have knowledge of the machine status in order to take correct deci-
sions.

• LHC: LHC machine status; CERN: Cern infrastructure; Magnet: Magnet status; DSS: Detector
Safety System

• During data taking periods when TDAQ Control is active it has master control over the TDAQ
system and the Detector control system.

• Outside data taking periods, when TDAQ Control is not active, the Detector Control system stays
fully operational and controls all its connected units.

• Each detector can be controlled independently both from the TDAQ Control including the Detec-
tor Control during data taking periods, for example during installation and test phases, or outside
data taking periods via Detector Control.

• The Command flow from TDAQ Control to Detector Control is performed from the TDAQ control
on the level of detectors to the Detector Control on the same level.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

5 Architecture 53

• The presented components will be expanded and explained in more detail in the chapter on Experi-
ment Control, when necessary details have been explained in the chapters on components and in-
terfaces.

5.7 Information sharing services view

Specialise the generic architecture for the purpose of information sharing services provided by the online
software.

There are several arias where the information sharing is used in the TDAQ system: synchronisa-
tion between processes, error reporting, operational monitoring, physics event monitoring, etc.
There are different types of information which TDAQ applications may share in different cases.
The Online Software provides a number of services to support all the possible types of informa-
tion exchange between TDAQ software applications.

As it is shown on Figure 5-2, each of those services acts as a common communication bus for all
the TDAQ systems and detectors. Information can be shared between applications belonging to
the same TDAQ system, among several TDAQ systems, and to each of the TDAQ systems and
detectors.

All the Information Sharing services are partitionable in a sense that different instances of the
same service are able to work in different TDAQ Partitions concurrently and fully independent-
ly.

5.8 TDAQ data base view

Data base architecture: including where access to (in and out of) databases is done.

Remark: This is a very basic view of the databases in TDAQ. It is expected that more details can be
presented when a common understanding is reached on the sharing of non-event data across DCS, DAQ,

Figure 5-2 Information Sharing context diagram

Information Sharing Services
Information Sharing Services

Information Sharing Services

Detectors HLTData
Flow

DCS Online
Software

LVL1

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

54 5 Architecture

HLT and offline systems. This will be the topic of discussion at the next ATLAS week and the next Atlas
Software workshop.

TDAQ and detectors are using configuration databases to describe their system topology and
the parameters which are used for data-taking. A variety of configurations can describe and
combine different combinations of existing partitions which are prepared for different types of
runs (physics, calibration, debug, shutdown, etc.).

The TDAQ and detectors are using offline conditions databases to read and to store conditions
under which the event data were taken. Such databases are used by the offline group for
analysis and reconstruction of physics data and by the tdaq experts to analyse logs of the
operational monitoring information stored during data taking by the online bookkeeper.

5.9 HLT view

The HLT issues relative to the generic architecture. It should probably include the organisation
of the EF and LVL2 blobs, how HLT gets at the data.

5.10 Partitioning

The definition of partitions and the allowed operations are defined in Chapter 3, "System Oper-
ations". We remind that partitioning refers to the capability of providing the functionality of the
complete TDAQ to a subset of the ATLAS detector.

The definition of the detector subset defines, because of the connectivity between RODs and
ROBs, which ROBs belong to the partition. Downstream of the ROBs a partition is realised by
assigning part of TDAQ resource (EBN, SFI, EF, online farm and network) to the partition: it is a
resource management issue. In particular a subset of the ROBs, as mentioned above, and a sub-
set of the SFIs Note that this assumes that assigning SFIs implies associating a sub-set of the EF farm; if
this is not the case then routing of events has to be done by the SFIs (see connection to TTC below).

As regards the transport of the data across the allocated resources, the DFM plays the key role of
routing subsets of ROBs to the associated subsets of the SFIs. In order for this to happen, in the
case of partitions associated to non physics runs (i.e. when there is no level-2), the DFM must re-

Figure 5-3

Configuration
Databases

TDAQ &
Detectors

Conditions
Databases

Offline

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

5 Architecture 55

ceive, via the TTC, the triggering information for the active partitions. Need for connections of up
to 35 TTC systems to DFM

5.11 Baseline architecture implementation

The baseline architecture outlined in this section defines a concrete implementation for each of
the components in the previous sections. The choices for the baseline are guided by the follow-
ing criteria:

• Existence of working prototypes.

• Performance measurements which either fulfil the final ATLAS specifications today or
can be safely extrapolated (e.g. CPU speed of commodity PCs).

• Clear evolution and staging path from an initial small system for use in testbeams and
commissioning to the full ATLAS system.

• Overall cost-effectiveness and cost-effective implementation of a staging scenario.

• Possibility to take advantage of future technological changes over the lifetime of the AT-
LAS experiment.

The proposed baseline architecture is a system that can be build with today’s technology and
achieve the desired performance. It is expected that changes in the area of networking and com-
puting will continue with the current pace over the next few years and will probably simplify
various aspects of the proposed architecture. In addition optimizations, in particular in the area
of the ROB I/O, will still be studied.

By making use of commercial off-the-shelf (COTS) components wherever possible the architec-
ture will be able to take advantage of any future improvements in industry in a straightforward
way. Only two custom components are foreseen in the final system: the RoIBuilder, of which
only a single instance is needed, and the ROBins. The prototype for the latter is currently imple-
mented on a single PCI board and about 800 to 1600 will be needed for the full system.

The performance numbers for the components which lead to a justification for the proposed ar-
chitecture can be found in Part 3.

5.11.1 Overview

Some introductory text; note that largest part dedicated to dataflow; the figure also refers to da-
taflow only.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

56 5 Architecture

Figure 5-4 Baseline dataflow sketch

Insert a table summarising: components, their number, their expected performance.

5.11.2 Read Out Link

The ROD to ROB link will be SLink. Since the ROBs will be located near the RODs in USA15
these links can be rather short compared to other scenarios where ROBs live on the surface.
About 1600 links will be needed.

SFISFISFISFISFISFISFISFI
L2PUL2PUL2PUL2PUL2PU

switchswitch

L2PUL2PUL2PUL2PUL2PU

switchswitch

L2PUL2PUL2PUL2PUL2PU

switchswitch

L2PUL2PUL2PUL2PUL2PU

switchswitch

L2PUL2PUL2PUL2PUL2PU

switchswitch

L2PUL2PUL2PUL2PUL2PU

switchswitch

L2PUL2PUL2PUL2PUL2PU

switchswitch

L2PUL2PUL2PUL2PUL2PU

switchswitch

L2PUL2PUL2PUL2PUL2PU

switchswitch

EB switch

SFISFISFISFISFISFISFISFI
SFISFISFISFISFISFISFISFI

1600 RODs w/ S-Link

R
O

B
IN

switch

CPU

100 ROSs

L2SV

LVL2
switch

4 100x100 switch
GE

pROS

DFM cross-
switch

DFM

pROS

R
O

B
IN

R
O

B
IN

switch

CPU

EB switch

R
O

B
IN

ROS ROS

motherboard

L2PUL2PUL2PUL2PUL2PU

switchswitch

L2PUL2PUL2PUL2PUL2PU

switchswitch

L2PUL2PUL2PUL2PUL2PU

switchswitch

L2PUL2PUL2PUL2PUL2PU

switchswitch

L2PUL2PUL2PUL2PUL2PU

switchswitch

L2PUL2PUL2PUL2PUL2PU

switchswitch

L2SVL2SVL2SVL2SVL2SV

cross-
switch

EB switch
LVL2
switch

L2PUL2PUL2PUL2PUL2PU

switchswitch

L2PUL2PUL2PUL2PUL2PU

switchswitch

L2PUL2PUL2PUL2PUL2PU

switchswitch

SFISFISFISFISFISFISFISFI

motherboard

EB switch
LVL2
switch

LVL2
switch

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

5 Architecture 57

5.11.3 Read Out Buffer

The Read Out Buffer (ROB) is implemented as a PCI board taking two input SLinks and a PCI
output interface; it also includes a single GBit Ethernet output link. It is located in USA15 near
the ROD crates.

The prototype ROB has X MByte of buffer memory. The high-speed input data path from the
RODs is handled by an FPGA. An additional PowerPC CPU is available on each ROB.

A ROB buffers its input data until the Level 2 system has made its decision. During that time it
will serve data to Level 2 on request.

The current prototype allows to access ROB data both via PCI and the Gigabit ethernet inter-
face. The former (PCI) path is the baseline choice; the latter (Gigabit Ethernet) facility will be
used to test alternative ways to optimize the flow of event data between the ROBs and the
downstream networks.

The final ROB design is expected to support 4 ROL channels.The ROB realises (by a factor 4x1)
the multiplexing indicated by the RRM function in the generic architecture.

Table 5-2

Compone
nt

Type
(custom/
COTS)

Performa
nce

Number of
components ? Comments

ROL

ROB

ROS

L2N

EBN

L2PU

RoIB

L2SV

SFI

EFPU

EFN

SFO

ONF

OSN

DCS

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

58 5 Architecture

5.11.4 Read Out System

The Read Out System (ROS) is a rack-mounted PC with multiple PCI buses and with multiple
ROBs per ROS: today’s scenario for the final system includes 3 ROBs per PC, each ROB with 4
ROLs. Requests for fragments coming for level-2 and requests for super-fragments (sequential
merging of up to 12 fragments) for the event builder are handled by the ROS, i.e. by the PC.

Each ROS is provided with two Gigabit Ethernet interfaces, one towards the level-2 network,
the second for the event builder network.

Optimization of the I.O, as indicated previously, will be further studied, for example in a scenar-
io where I/O to level-2 is performed directly from the ROB via its Gigabit ethernet interface.
This latter scenario will include also small switches concentrating several ROB channels into a
small number of connections to the level-2 and event builder networks.

The ROSes are expected to be housed underground, so that the number of long fiber connec-
tions is of the order of twice the number of the ROSes.

5.11.5 Level 2 and Event Building Network

All data transferred between the ROSs and the Level 2 and event building units uses Gigabit
Ethernet as the data link layer. The system includes a set of concentrating switches around the
Level 2 units and a small set of central switches, for the level-2 and the event builder networks.
The concentrating switches are used to reduce the number of ports on the central switches
whenever the total bandwidth requirements of a component allows to bundle it with others
without exceeding the capacity of a single Gigabit Ethernet fiber.

The baseline architecture assumes the use of Gigabit Ethernet interfaces throughout the system.

The level-2 and event builder central switches will, logically, be monolithic: in the sense that
each switch will connect to all sources and destinations. However, they may be physically or-
ganised in terms of combined small switches.

Software-wise the event builder and level-2 networks are supported by the data collection com-
ponent of the dataflow.

5.11.6 RoI Builder and Level 2 Supervisor

The RoIBuilder is a custom design described in ref[roibuilder]. It receives input from the Level 1
system via SLink. The output of the RoIBuilder is again sent via SLink to one of multiple Level 2
Supervisor processors. The latter are normal PCs connected to the data flow network.

The RoIBuilder design is modular and scalable: additional Level 2 Supervisor nodes can be eas-
ily added and will increase the performance linearly. Measurements done so far show that only
a small number (< 5) of them will be needed.

The Level 2 supervisor is a PC running Linux. The only custom component is the SLink receiver
card. Supervisor nodes can therefore be easily added and replaced in case of failure.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

5 Architecture 59

5.11.7 Level 2 Processing Units

Level 2 processing units will be normal rack-mounted PCs running Linux. Dual CPU systems
are the most cost-effective solution at the moment, although that may change in the future.
There will be about 130 Level 2 nodes in the final system. Initial setups during commissioning
can be much smaller. Level 2 processing units are COTS components and can be replaced and
added at any time.

5.11.8 Data Flow Manager

The Data Flow Manager (DFM) will be physically implemented by rack-mounted PCs running
Linux. Again dual CPU systems are the most cost-effective solution at the moment.

Although there will be only one Data Flow Manager per partition, the need for multiple parti-
tions may require a set of DFM nodes at any given time, all capable of performing the same
task. All DFMs except for the one running the real trigger partition will need a TTC receiver
board to receive detector specific triggers. DFMs receive input from the LVL2 Supervisor and
talk to the SFIs and the ROBs.

5.11.9 SFI

The SFI components need no special hardware except for a second Gigabit Ethernet interface
that connects them to the Eventfilter network.

The SFIs are rack-mounted PCs running Linux. The actual event building requires a lot of CPU
capacity to handle the I/O load and the event assembly. Again dual CPU systems are the most
cost-effective solution at the moment.

5.11.10 Eventfilter Network

The current baseline for the Eventfilter network is actually a set of small networks, each con-
necting a set of Eventfilter nodes with a small set of SFIs (possibly even one) and SFOs. This al-
lows maximum flexibility in choosing the number of Eventfilter nodes for each cluster. The
input rate can be increased by simply adding more eventbuilding node to a given subnetwork.

An optimization of the baseline option, above, includes a common event filter network connect-
ing all SFI’s, SFO’s and event filter nodes together.

Since Eventfilter code will be CPU bound they will not require the full Gigabit bandwidth to
keep them busy with data. Hence concentrating switches can be used to cluster multiple nodes
and connect to a central switch.

5.11.11 Eventfilter Nodes

Eventfilter nodes are rack-mounted PCs, again most likely dual CPU machines. Computing
performance is more important than I/O capacity for these nodes. Due to the large number of

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

60 5 Architecture

CPUs required the use of blade servers which house hundreds of processors in a rack together
with local switches might be a more attractive solution than 1U rack-mounted PCs.

5.11.12 Sub Farm Output

The Sub Farm Output (SFO) nodes take the accepted events from the Eventfilter nodes and pass
them to mass storage. In the current implementation these are normal PCs with an attached
hard disk. They write events to the disk in a series of files. It is assumed that a different process
picks up those files and sends them to their final destination in the CERN computing division.

The SFOs also provide the necessary buffering if the network connection to the CERN main site
is down. Assuming that the SFOs have to buffer up to 24 hours of event data at 200 Hz times 1.8
MByte, they will need a total of 32 TByte of disk storage. Today PC servers can be bought with >
3 TByte of cheap IDE disk storage for less than $10000. The SFOs will therefore be consist of nor-
mal PCs but with a housing that allows to add large disk arrays.

5.11.13 Other baseline elements

ONLINE software: controls etc.

DCS

5.12 Scalability of the system

Define required performance profile (in terms of level-1 rate vs time)

Discuss the scalability of the system, as a function of the Level-1 rate. First of all the main impli-
cation of a change in level-1 rate is in the HLT area: the size of the farms. This issue is both a cost
driver and has implication on the size of the central networks. At low values of the level-1 rate,

In the baseline scenario, the detector read-out is present in its entirety since the beginning.

Scalability of the network may be achieved by using a single switch at low rates (sharing l2 and
eb traffic).

Show diagrammatically the evolution of the system size as a function of level-1 rate.

5.13 References

5-1 Document from Architecture working group on global architecture.

5-2 DataFlow Architecture document.

5-3 ROS Architecture document.

5-4 Data Collection Architecture document.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

6 Fault Tolerance and Error Handling 61

6 Fault Tolerance and Error Handling

6.1 Fault Tolerance and Error Handling Strategy

Error handling and fault tolerance are concerned with the behaviour of the TDAQ system in the
case of failures of its components. By failure we mean the inability of a component to perform
its intended function. This includes both hardware and software caused problems.

The overall goal is to maximize system up-time, data taking efficiency and data quality for the ATLAS
detector. This is achieved by designing a robust system that will keep functioning even when
various parts of it are not working properly.

Complete fault tolerance is a desired system property which does not imply that each compo-
nent must be able to tolerate every conceivable kind of error. The best way for the system to
achieve its overall goal may well be to simply reset or reboot a component which is in an error
state. The optimal strategy depends on the impact the faulty component has on data taking, the
frequency of the error and the amount of effort necessary to make the component more fault tol-
erant.

The fault tolerance and error handling strategy is based on a number of basic principles:

• Minimize the number of single points of failure in the design itself. Where unavoidable,
provide redundancy to quickly replace failing components. This might consist of spare
parts of custom hardware or simply making sure that critical software processes can run
on off-the-shelf hardware which can be easily replaced.

• Failing components must affect as little as possible the functioning of other components.

• Failures should be handled in a hierarchical way where first local measures are taken to
correct it. Local recovery mechanisms will not make important decisions, e.g. to stop the
run, but pass the information on to higher levels.

• All errors are reported in a standardized way to make it easy to automate detection and
handling of well-defined error situations (e.g. with an expert system).

• All errors will be automatically logged and be available for post-mortem analysis if neces-
sary. Where the error affects data quality the necessary information will be stored in the
condition database.

We distinguish the following cases:

Error detection describes how a component finds out about failures either in itself or neighbour-
ing components. Errors are classified in a standardized way and may be transient or permanent.
A component should be able to recover from transient errors by itself once the cause for the er-
ror disappears.

Error response describes the immediate action taken by the component once it detects an error.
This action will typically allow the component to keep working but maybe with reduced func-
tionality. Applications which can sensibly correct errors that are generated internally or occur in
hardware or software components they are responsible for should corrected them directly.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

62 6 Fault Tolerance and Error Handling

In many cases the component itself will not be able to take the necessary action about failures in
a neighbouring component. Even if the component is unable to continue working, this should
not be a fatal error for the TDAQ system if it is not a single point of failure.

Error reporting describes how the failure condition is reported to a higher level which might be
able to fix the error condition. The mechanism will be a standardized service which all compo-
nents use. The receiver of the error message might be persons (like a shifter or an expert) or an
automated expert system.

Error recovery describes the process of bringing the faulty component back into a functioning
state. This might involve manual intervention by the shifter or an expert or an automated re-
sponse initiated by the expert system. The time-scale of this phase will typically be longer than
the previous ones and can range from seconds to days (e.g. in the case of replacing a piece of
hardware which requires access to controlled areas).

Error prevention describes the measures to be taken which prevent the errors to be introduced to
hardware or software. Good software engineering, the use of standards, training, testing and
the availability and use of diagnostic tools help in making the TDAQ system fault tolerant.

6.2 Error Definition and Identification

In order to respond to error conditions it is important to have a clearly defined TDAQ wide
classification scheme that allows proper identification. It is assumed that error conditions are
detected by data flow applications, controllers, event selection software and monitoring tasks.
These conditions may be caused by failures of hardware they control, of components that they
communicate with or these may occur internally.

The sources have a dual responsibility: correct anomalous conditions immediately or issue an
error message, suitably classified and containing all necessary information for subsequent ac-
tion by human or expert system.

Error messages are classified according to severity. The classification is necessarily based on lo-
cal judgement; it is left to human/artificial intelligence to take further action, guided by the
classification and additional information provided by the applications that detect the errors:

Additional information consists of a unique TDAQ wide identifier (note that status and return
codes, if used, are internal to the applications), determination of the source and additional infor-
mation needed to repair the problem. All messages are directed to an Error Reporting Service,
never directly to the application that may be at the origin of the fault.

For successful fault tolerance, it is essential that correct issuing of error messages is enforced in
all TDAQ applications.

6.3 Error Reporting Mechanism

Applications encountering a fault make use of an error reporting facility to inject an appropriate
message to the TDAQ system. The facility is responsible for the message transport, message fil-
tering and message distribution. Optional and mandatory attributes can be passed with the
message. The facility allows receiving applications to subscribe to a message according to the

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

6 Fault Tolerance and Error Handling 63

severity or other qualifiers independent of its origin. A set of commonly used qualifiers will be
recommended. These can for example include the detector name, the failure type like hardware,
network, software failures, or finer granularity indicators like ‘Gas’, ‘HV’ etc. They provide to-
gether with mandatory qualifiers like process name and id, injection date and time, and proces-
sor identification provide a powerful and flexible system logic for the filtering and distribution
of messages.

Automatic message suppression at the sender level is foreseen to help avoiding avalanches of
messages in case of major system failures. A count on the suppressed messages will be kept.
Message suppression at the message reporting system level will also be possible.

An error message database may be used to help for standardization of messages including their
qualifiers. A help facility could be attached which allow the operator to get detailed advise for
the action on a given failure.

6.4 Error Diagnostic and Verification

Regular verification of the system status and its correct functioning will be a vital operation to
help avoiding failures to occur. A customizable diagnostic and verification framework will al-
low to verify the correct status of the TDAQ system before starting a run or between runs, auto-
matically or on request. It will make use of a suite of custom test programs which are specific for
each component type in order to diagnose eventual faults.

6.5 Error Recovery

Error recovery mechanisms describe the actions which are undertaken to correct any important
errors that a component has encountered and can not handle on its own. The main goal is to
keep the system in a running state and minimize the consequences for data taking.

There will be a wide range of error recovery mechanisms, depending on the subsystem and the
exact nature of the failure. The overall principle is that the recovery for a failure should be han-
dled as close as possible to the actual component where it occurred. This allows both to isolate
failures to subsystems without necessarily involving any action from other systems, to decen-
tralize the knowledge required about properly reacting to a failure and to allow experts to mod-
ify the error handling in their specific subsystem without having to worry about the
consequences for the full system.

If a failure cannot be handled by a subsystem at a given level, it will be passed on to a higher
level in a standardized way. While the higher level will not have the detailed knowledge to cor-
rect the error, it will be able to take a different kind of action which is not appropriate at a lower
level. For example it might be able to pause the run and draw the attention of the shifter to the
problem, or it might take a subfarm out of the running system and proceed without it.

The actual reaction to the failure will strongly depend on the type of error. The same error con-
dition, for example timeouts on requests, may lead to quite different actions depending on the
type of component. A list of possible reaction is given in Chapter 6.7, "Typical Use Cases".

Each level in the hierarchy will have different means to correct failures. Only the highest levels
will be able to pause data taking or decide when to stop a run.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

64 6 Fault Tolerance and Error Handling

The functionality for expert system type automatic recovery will be integrated into the hierar-
chical structure of the TDAQ control framework and can optionally take automatic action for
the recovery of a fault. It provides multi-level decentralized error handling and allows actions
on failures on a low level. A knowledge base containing the appropriate actions to be taken will
be established at system installation time. Experience from integration tests and in test beam
operation will initially provide the basis. Each supervision node can contain rules customized
to its specific role in the system.

6.6 Error Logging and Error Browsing

Every reported failure will be logged in a local or central place for later retrieval and analysis.
The time of occurrence and details on the origin will also be stored to help determining the
cause and to build failure statistics, which should lead to the implementation of correcting ac-
tions and improvements of the system. Corresponding browsing tools will be provided.

6.7 Typical Use Cases

This paragraph will describe how a component would react to some typical faults both in a global ap-
proach and discussing any system specifics. The current collection is incomplete. Contributions should be
provided by the systems. It is the intension to include details which would go beyond the scope (or space)
in the TDR in a supporting document.

ROL (flow control, missing ROD fragments, failure); DF applications (failure of one or more); control
and/or event data messages (packet loss, flow control, QOS (peer to peer or switches). Results from mod-
elling may be used to justify.

A short list of possible reactions on different levels (from inside an application to system wide)
and their impact on data taking follows:

• Symptom: Read-out link not working properly.

• Action: Reset of local hardware.

• Impact: Some parts of the event might be missing. If successful only an informa-
tional message would be send to the higher level. If not successful a error message
would be issued.

• Symptom: Timeout for requests to a ROS inside a LVL2 node.

• Action: Retry a configurable number of times.

• Impact: Parts of an event might be missing. If not successful, the LVL2 trigger might
not be able to run its intended algorithms and the event has to be force-accepted. If
the error persists, the data taking efficiency might drop because the event building
will be mostly busy with forced-accept events.

• Symptom: Dataflow component reports that ROS times out repeatedly.

• Action: Pause the run, remotely reset the ROS component and if successful resume
the run. If not successful, inform all concerned components that this ROS is no

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

6 Fault Tolerance and Error Handling 65

longer available and inform higher level (who might decide to stop the run and
take other measures like calling an expert).

• Impact: Data missing in every event.

• Symptom: LVL2 supervisor event request to LVL2 node times out.

• Action: retry a configuration number of times. Then take node out of scheduler and
report to higher level.

• Impact: Available LVL2 rate is reduced

• Symptom: LVL2 Supervisor reports that LVL2 node repeatedly timed out.

• Action: Remotely reset the offending node. If successful, the node should come
back into the run. If not successful the

• Impact: LVL2 rate is reduced while node is reset.

• Symptom: None of the nodes in a Eventfilter subfarm can be reached via the network (e.g.
in case of a switch failure).

• Action: Take all affected nodes out of any scheduling decisions (e.g. in the DFM) to
prevent further timeouts. Inform higher level about the situation.

• Impact: Data taking rate is reduced.

As can be seen, the same error condition (e.g. timeouts for requests) leads to quite different ac-
tions depending on the type of component. Each ROS is unique in that its failure leads to some
non-recoverable data loss. A LVL2 node on the other side can be easily replaced with a different
node of the same kind.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

66 6 Fault Tolerance and Error Handling

6.7.1 Reliability and fault tolerance in the Data Flow

This section was moved from Chapter 8, "Data-flow" and inserted as is here. It is most likely that this
will be reworked into Section 6.7, "Typical Use Cases".

This section presents the major error use cases of the DataFlow. As a guideline to identifying the error use
cases, major should be interpreted as referring to those that have directly influenced the design of the Da-
taFlow. Each use-case is described as having transient, accumulative or persistent effect on the behaviour
of the DataFlow. The handling of each use-case is presented based on results of real life tests. The exact
layout of this chapter is subject to the identification of the major error use cases.

Each subsection groups related error use cases.

6.7.1.1 Detector read-out

Possible error use cases here are: ROL failure; assertion of one or more of the error bits in the S_LINK end
of frame control word, i.e. ROD fragment corruption; assertion of S-LINK LDOWN; missing or out of
sequence ROD fragments.

6.7.1.2 Level 1 to RoI builder

This sub section should be a summary of what is detailed in [8-28].

6.7.1.3 Control and event data messages

How the system handles the loss of each type of control message and event fragments separately.

6.7.1.4 Applications

How the system handles the failure of one or more of the applications.

6.7.2 Reliability and fault tolerance in the XXX system

describe important reliability and fault tolerant aspects in the respective system

6.8 References

Working Group Report of the Atlas TDAQ Error Handling and Fault Tolerance Working Group

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

7 Monitoring 67

7 Monitoring

7.1 Overview

A fast and efficient monitoring is essential during the data taking periods. Any malfunctioning
part of the experiment must be identified and signalled as soon as possible so that it can be
cured. The sources of monitoring information may be events, fragments of events or any other
kind of information (histograms, counters, status flags, etc...). They may come from the hard-
ware, processors or network elements, either directly or via the DCS. Some malfunctions can be
detected by the sole observation of a single piece of information and could be performed at the
level of the source of the information. An infrastructure has to be provided to process the moni-
toring information and bring the result to the end user (normally the shift crew).

The monitoring can be done at different places of the Data Flow in the DAQ system: ROD Crate,
ROS, and SFI. Moreover, additional monitoring can be provided by the LVL2 trigger and by the
Event Filter due to the fact that these programs will decode data, compute tracks and clusters,
count relevant quantities for simple event statistics or to monitor the functioning of the various
trigger levels and their selection power. It is possible to foresee that a part of the Event Filter is
dedicated to monitoring activities where events tagged at read-out level or at previous stages of
the selection are routed by the Data Collection (Event Builder) for special treatment. More gen-
erally, although this not relevant of the present chapter, one should envisage the case of an On-
line Farm downstream the Event Filter and in charge of performing CPU intensive monitoring
tasks on events selected at the Event Filter level, e.g. calibration and alignment checks. This
farm could also be the place where online calibration and alignment tasks are performed.

7.2 Monitoring sources

7.2.1 DAQ monitoring

7.2.1.1 Front-end and ROD monitoring

sub-detector front end electronics specific monitoring

• data integrity monitoring

• operational monitoring (throughput and similar, scaler histograms)

• hardware

7.2.1.2 Data Collection monitoring

DAQ specific monitoring

• data integrity monitoring

• operational monitoring (throughput and similar, scaler histograms)

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

68 7 Monitoring

• • hardware

7.2.2 Trigger monitoring

7.2.2.1 Trigger decision

simulate the decision of the trigger stages to confirm the quality of the decision

7.2.2.1.1 LVL1 decision

The LVL1 decision (for LVL1 accepts) is naturally cross-checked when doing the LVL2 process-
ing. In addition, a pre-scaled sample if min-bias LVL1 triggers needs to be passed to dedicated
processing tasks (possibly in a dedicated partition of the Event Filter).

7.2.2.1.2 LVL2 decision

Similarly to LVL1, the LVL2 decision (for LVL2 accepts) is naturally cross-checked when doing
the EF processing and pre-scaled samples of events rejected at LVL2 should be passed to EF.
Detailed information on the processing in LVL2 is appended to the event (via pROS) for accept-
ed and force-accepted events. This will be available at the EF for further analysis.

7.2.2.1.3 EF decision

Detailed information should be appended to the event, for a sub-set of accepted and rejected events
for offline further analysis.

7.2.2.1.4 Classification monitoring

In terms of monitoring, classification is a very important output of both LVL2 and EF process-
ing. It consists of a 128-bit bitmap which records which signatures in the trigger menu were
passed. Histograms can be filled locally on the processors where the selection is performed.
With an accept rate of 1 kHz for LVL2 and 200 Hz for EF, and assuming a sampling rate of 0.1
Hz, a 1 byte depth is sufficient for the histograms. For both LVL2 and EF farms, the rate for the
transfer of the histograms is therefore 1.2 kbyte/s.

7.2.2.1.5 Physics monitoring

The most simple approach to monitor the quality of the physics which is sent to permanent stor-
age will consist in measuring the rates for some physics channel. It may be performed easily in
the EF. A part of the results of these monitoring operations could be appended to the event
bytestream for offline analysis. Others could be sent to the operator via the standard Online
Software media for an online analysis.

Histograms of the rates for every item of the trigger menu as a function of time should be re-
corded, with the relevant variables with which they must be correlated (e.g. the instantaneous

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

7 Monitoring 69

luminosity). Such histograms can give very quickly an evidence for malfunctioning, although
their interpretation may be quite tricky.

Well-known physics channels could be monitored so that one could permanently compare the
observed rates with the expected ones. The list of such channels should be established in collab-
oration with the physics groups.

Information coming from the execution of reconstruction algorithms may be of interest. One
could monitor e.g. the number of tracks found in a given detector on a per event basis. There
again, a comparison with reference histograms may be of great help to detect malfunctioning.
Physics quantities should be monitored, e.g. mass-plots of W and Z, n-Jet rates, reconstructed
vertex location, quality of muon-tracks, quality of calo clusters, quality of ID tracks. Input is re-
quired from offline reconstruction groups.

7.2.2.2 Operational monitoring

Everything related to the “system” aspects, e.g. transportation of the events or event fragments,
usage of computing resources, etc...

7.2.2.2.1 LVL1 operational monitoring

The integrity and correct operation of the LVL1 trigger will be monitored at both the hardware
level by processes running in trigger crate CPUs and also by monitoring tasks in the Event Fil-
ter.

The LVL1 trigger is the only place where every bunch crossing is processed and where a crude
picture of the real beam conditions can be found. For example, the calorimeter trigger fills histo-
grams, in hardware, of the "level 0" rates and spectra of every trigger tower and can quickly
identify, and if necessary suppress, hot channels. Hardware monitoring is also used to check the
integrity of links between the successive steps in the trigger processor pipeline.

At the Event Filter, monitoring tasks will check for errors in the trigger processors at a lower
rate than hardware monitoring, but with greater diagnostic power. Event Filter tasks will also
produce various histograms of trigger rates, their correlation and history.

7.2.2.2.2 LVL2 operational monitoring

The LVL2 selection software runs as part of the Data Collection (DC) in the L2PU
[L2MonitMRS]. It will therefore use the DC infrastructure and hence the monitoring tools fore-
seen for this system. The following aspects, relevant of DC, will be monitored:

• trigger, data and error rates

• CPU activity

• queue occupancies (load balancing)

One could also mention:

• LVL2 selectivity per LVL1 trigger type

• RoI sizes

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

70 7 Monitoring

• RoI occupancies per sub-detector

• RoI specific hit-maps per sub-detector

Monitoring of the quality of the data by LVL2 processors is not envisaged. Indeed, the available
time budget is limited because of the necessity to release data from the ROB. Monitoring a frac-
tion of the events in the L2PU is not desirable since this would introduce large variations in
LVL2 latencies as well as possible points of weakness in the LVL2 system. The necessary moni-
toring of the LVL2 quality shall therefore be delegated to the downstream monitoring facilities,
i.e. the EF (or online monitoring farm) and the offline analysis. One should however discuss
very carefully the opportunity to fill in L2PU some histograms, possibly read at the end of the
run, so that a high statistics information is given, which could not be reasonably be obtained by
using forced accepted events on a pre-sampled basis. The evaluation of the extra CPU load for
such operations should be made.

7.2.2.2.3 EF operational monitoring

The monitoring of the data flow in the Event Filter will be primarily done directly at the level of
the EFD process. Specific EFD tasks, part of the main data flow, will be in charge of producing
relevant statistics in terms of throughput at the different levels of the data flow. They have no
connection with other processes external to EFD.. The detailed list of information of interest for
the end user has not yet be finalised and will continue to evolve all along the lifetime of the ex-
periment.

Among the most obvious parameters which are going to be monitored, one might quote:

• the number of events entering the Farm

• the number of events entering each sub-farm

• the number of events entering each processing host

• the number of events entering each processing task

• the number of events selected by each processing task, as a function of the physics channels
present in the trigger menu

• the same statistics as above at the level of the processing host, the sub-farm and the Farm

Other statistics may be of interest such as the size of the events, as a function of different param-
eters (the time, the luminosity of the beam, the physics channel). As stated above, the identifica-
tion of these statistics will be formulated more precisely at a later stage of the development of
the experiment.

The results of the data flow monitoring will be sent to the operator via standard Online SW me-
dia (e.g. IS or Histogram Service in the present implementation).

7.2.2.2.4 PESA SW operational monitoring

A first list of parameters which could be monitored for debugging purpose and comparison
with modelling results can be given:

• time spent in each algorithm

• frequency at which each algorithm is called

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

7 Monitoring 71

• number of steps in the step sequencer before rejection

• info and debug messages issued by the PESA SW

• number of active input/output trigger elements

Some of these points could be also monitored all along the duration of normal data taking.

Hooks necessary for these profiling measurements should be implemented directly at the level
of the base class of the GAUDI algorithm. Profiling tools such as NetLogger for coarse meas-
urements and TAU have already been studied in the context of LVL2 and their use at a larger
scale will be considered in PESA SW.

It is intended to make use of the ATHENA Histogramming service, which should therefore be
interfaced to the EF infrastructure. Some control mechanisms should be provided to configure
the various monitoring options and to operate on the histograms (e.g. to reset them after having
been transferred).

7.2.3 Detector monitoring

The detector monitoring can be done at different places of the Data Flow in the DAQ system:
ROD Crate, ROS, and SFI. Moreover, additional monitoring can be provided by the LVL2 trig-
ger and by the Event Filter due to the fact that these programs will decode data, compute tracks
and clusters, count relevant quantities for simple event statistics or to monitor the functioning
of the various trigger levels and their selection power.

The ROD level is clearly the one where the first check for monitoring the data quality and integ-
rity can be easily done. The computing power provided by e.g. DSPs installed directly on the
ROD board allows to perform sophisticated calculations and to fill histograms. Transportation
of these histograms towards analysis workstations would then be performed by the ROD crate
CPU (using the Online SW tools running on this CPU).

An extended part of the detector is available at the ROS level, and monitoring at this level is
therefore considered as a potentially interesting facility. A correlation between ROS crates is not
seen as needed because such a correlation may be obtained at the SFI level. Event fragments
sampled at the level of the ROS could then be routed to dedicated workstations operated by the
shift crew.

Some detectors will need a systematic monitoring action at the beginning of the run to check the
integrity of the system. This concept has been already introduced at the test beam by the Pixel
sub-detector: at the beginning of the run and at the end there are special events with a start and
end of run statistics. The need of having this first check at the ROD level is driven by the huge
amount of information. If monitored later would complicate the back tracking of possible prob-
lems. The frequency of this activity can be limited at the start and end of run in normal opera-
tions.

When information from several detectors is needed, the natural place to make it is obviously af-
ter the Event Builder. The SFI is the first place were fully assembled events are available. The
monitoring at the level of the SFI is then the place where calorimetry, muons and level 1 wants
to have the first cross check of consistency between the LVL1 information and the raw values of
the trigger towers. Moreover at the SFI level a first correlation among sub-detectors is possible
and is seen as extremely useful to spot all problems that not necessarily need a full reconstruc-

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

72 7 Monitoring

tion. At that level is also possible to perform a first quick correlation between different sub-de-
tectors data, as for example checking the rough matching of a muon detected by the Muon
precision chambers and a track in the Inner detector.

When monitoring require to perform some reconstruction operations, it seems natural to try to
save computing resources by re-using the results obtained for selection purposes and therefore
to execute this activity in the framework of the EF. In addition, some detectors foresee to per-
form monitoring at the level of event decoding, i.e. in the bytestream conversion service, and to
fill histograms during the reconstruction phase associated with the selection procedure in the
EF. These histograms should be sent regularly to the shift operators and archived. More sophis-
ticated monitoring operations might require longer execution times and be potentially danger-
ous for the EF as robustness of the implementation with respect to crashes due to errors is not
necessarily as well established as it could be for selection algorithms. The infrastructure provid-
ed by the monitoring tasks implemented in the EF (see Chapter 9) is intended to solve this prob-
lem.

Finally, some monitoring activity such as calibration and alignment checks may require events
with a special topology selected at the level of the Event Filter. For instance, the Inner Detector
group envisages to perform online the alignment of the tracking system. This requires some
thousands of selected events, either stored on a local disk of fed directly to the processing task.
Then CPU intensive calculations are required to invert matrices which may be as large as 30000
x 30000. With a cluster consisting of 16 PC (as available in 2007, i.e. 5GHz CPU clock, 1GB of fast
memory and 64 bit floating point arithmetic unit), this can be made in less than one hour. A
very efficient monitoring of the tracker alignment can therefore be performed.

7.3 Monitoring destinations and means

This section aims at describing where and how (i.e. with which tools) it is intended to perform
monitoring operations

7.3.1 Online Software services

The Online Software (see Chapter 10) provides a number of services which can be used as mon-
itoring mechanism which is independent of the main data flow stream. The main responsibility
of these services is to transport the monitoring data requests from the monitoring destinations
to the monitoring sources and to transport the monitoring data back from the sources to the des-
tinations.

There are four services provided for a different types of the monitoring information:

• Event Monitoring Service - is responsible for transportation of physical events or event fragments
sampled from well-defined points in the data flow chain to the software applications which can an-
alyse them in order to monitor the state of the data acquisition and the quality of physics data of the
experiment.

• Information Service - is responsible for exchange of user-defined information between TDAQ
applications and aimed to be used for the operational monitoring. It can be used to monitor the sta-
tus and various statistics data of the TDAQ sub-systems and their hardware software elements;

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

7 Monitoring 73

• Histogramming Service - is a specialisation of the Information Service with the aim of transport-
ing histograms. It accept several commonly used histogram formats (lik3 ROOT histograms for
example) as the type of information which can be send from the monitoring sources to the destina-
tions;

• Error Reporting Service - provides transportation of the error messages from the software appli-
cations which detect these errors to the applications which are responsible for their monitoring and
handling.

Each service offers the most appropriate and efficient functionality for a given monitoring data
type and provides specific interfaces for both monitoring sources and destinations.

7.3.2 Monitoring in the Event Filter

From the beginning of the design of the EF, it has been foreseen to perform some monitoring ac-
tivities in it, in addition to the ones related directly to the operation. EF is indeed the first place
in the data taking chain where the full information about the events is available. Decisions from
the previous levels of the trigger system can be checked from both accepted and rejected (on a
pre-scaled basis) events. Information coming from the reconstruction phase, which generally re-
quires a large amount of CPU power, can be rather easily re-used, leading to large savings in
terms of computing resources. Finally, the fact that EF is part of the data taking chain ensures
that pertinent information will be made available to the shift crew in the best time delays.

Monitoring in the Event Filter, or more generally monitoring after the Event Builder, can be per-
formed in different places:

• directly in the filtering tasks (which raises the problem of the robustness of the monitoring code),

• in dedicated monitoring tasks running in the context of the Event Filter (then, one should think of
passing the information gathered in the filtering task to take profit of the already used CPU)

• or in a dedicated, independent sub-farm. In that case, that is the Data Collection DFM which takes
care of directing potentially interesting events (tagged at read-out, LVL1 or LVL2 levels).

Those different possibilities are not mutually exclusive.

7.3.3 Monitoring after the Event Filter

In order to perform the CPU intensive monitoring activities described at the end of
Section 7.2.3, some dedicated online farm must be provided. It would be fed by events specially
selected in the Event Filter. Dedicated output channels may be devoted to such events which
would be directed towards the farm. This farm could be also the place where online calibration
and alignment tasks are performed.

7.4 Archiving monitoring data

Data which is produced by monitoring activities should be archived by some bookkeeping serv-
ice so that it can be cross-checked offline with more detailed analysis. One should also store (in
a dedicated channel?) events whose acceptation has been forced at any level of the selection
chain. These events are necessary to evaluate precisely the acceptance of the trigger.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

74 7 Monitoring

Part 2

System Components

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8 Data-flow 77

8 Data-flow

8.1 (Possible introduction)

8.2 Detector read-out and event fragment buffering

8.2.1 Read-out link

Each sub-detector reads data from the detector over Front-End links and uses a ROD to multi-
plex the data. Each of the sub-detectors has different requirements (and different designers;-)
consequently the implementation of the ROD varies between sub-detectors. The guidelines for
designing the ROD are set out in the Trigger & DAQ Interfaces with Front-End Systems: Re-
quirement Document [8-1]. The purpose of the ROL is to connect the sub-detectors to the TDAQ
system and it is responsible for transmitting error-free data from the output of the ROD to the
input of the ROS, the first element in the TDAQ chain.

The ROL requirements have been stable since the High-level Triggers, DAQ and DCS Technical
Proposal TP [8-2]:

• 32 bit data at 40.08Mhz, (~160 MByte/s)

• A control bit to identify the start and end of an event

• Xon/Xoff flow control

• Error detection, error rate < 10-12

• A maximum length of 300m for the fibre version, 25m for the electrical version.

To ensure homogeny, the output of the ROD is defined by the S-LINK specification [8-3]. In ad-
dition, The raw event format [8-4] defines the order and content of the information transmitted
from the ROD. At the other end of the ROL, the ROS inputs are identical for all sub-detectors
and also conform to the S-LINK standard.

The S-LINK specification has been stable since 1996. It is used in COMPASS and in other LHC
experiments, e.g. CMS. S-LINK is an interface definition; it only defines protocols and recom-
mends connector pin-out. As shown in Figure 8-1, the ROD end of the ROL is called the Link
Source Card (LSC) and the ROS end the Link Destination Card (LDC). They are connected by
optical fibres or copper cables. Event data flows from the LSC to the LDC on the forward chan-
nel. Flow control information, i.e. the ROS can stop the ROD sending data if it's input buffers
are almost full, flows from the LDC to the LSC on the return channel.

The DIG - ROD Working Group have also recommended that the LSC be placed on a mezzanine
card to facilitate support and upgradeability [8-5]. The form factor of these mezzanine cards is
based on the CMC [8-6] standard.

The LSC plugs onto the S-LINK connector on the ROD (or its associated rear transition card).
For the forward channel, a Field-programmable gate array (FPGA) handles the protocol and de-
livers words to a serial/deserialiser (SERDES) chip which performs parallel-to-serial data con-

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

78 8 Data-flow

version and encoding. The output of the SERDES drives an optical transceiver that in turn feeds
the optical fibre. The operation of the receiving card, the LDC, is a mirror image of the LSC. In
fact the current LSC and LDC are physically the same card with different programs in the FP-
GA.

Various prototype implementations of the ROL have been built to prove the concept and meas-
ure the performance. The previous version of the ROL, the ODIN, used a physical layer that
was based on the Hewlett Packard G-LINKs (HDMP-1032/1034). They have also been used suc-
cessfully in ATLAS test-beams and eighty of these ROLs are being used in the COMPASS exper-
iment. However, the maximum bandwidth is limited by the G-LINK at 128 MByte/s. Following
the second ROD workshop, the requirements of the ROL were increased to 160MByte/s and a
second version of this link was designed which used two G-LINKs chips per channel. Unfortu-
nately, this raised the cost as two pairs of fibres and associated connectors were required.

Another recommendation of the ROD Working Group was to build a ROL that would use only
one pair of fibres. This has been achieved by using 2.5 Gbit/s components in the current design,
the High-speed Optical Link for ATLAS (HOLA) [8-7]. In this implementation a small FPGA,
the EP20K30E APEX 20K, handles the S-LINK protocol. The SERDES chip is a Texas Instru-
ments TLK2501 running at 2.5 Gbit/s for both for the forward and for the return channel (one
per card). For the optical transceiver, the Small Form Factor Pluggable (SFP) Multimode 850 nm
2.5 Gbit/s with LC Connectors is recommended, e.g. the Infineon V23818-N305-B57. The use of
pluggable components allows the optical components to be changed in case of failure.

Test equipment has been developed for the ROD/ROL/ROS. This includes an emulator that
can be placed on the ROD to check that the ROD conforms to the S-LINK specification. Similar-
ly, an emulator exists that can be placed on a ROS to emulate a ROL connection. The emulators
allow ROD, ROL and ROS designs to be tested at full bandwidth and errors to be introduced in
a controlled manner. The HOLA was produced and tested in 2002 and satisfies all requirements
of the ROL.

In addition, for the purposes of exploitation in laboratory test set-ups and in test-beams, i.e. fur-
ther testing, cards exist which allow the ROL to be interfaced to the PCI Bus in a PC. Perform-
ance measurements of this interface [8-8] have shown that data can be transferred into a PC at
160 MByte/s using a single ROL input. Modifications to the firmware have allowed the emula-

Figure 8-1 The relationship between the S-LINK and the ROL.

��� ���

����	

�����������		
�

�

��	����		
�

������

����	

���
��������

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8 Data-flow 79

tion of an interface with four ROL inputs. Measurements using this emulator have demonstrat-
ed a bandwidth of 450 MByte/s into a PC. The next version of the interface, the FILAR, will
have four ROLs on-board and should be ready for the April 2003 test-beam.

The purchase of the cards, in small quantities, is handled by the CERN stores. For quantities re-
quired for ATLAS a tendering process will be initiated in 2003 thus ensuring the availability of
larger quantities during 2004. The production schedule will be adapted to the requirements of
the sub-detectors who have been asked by the DIG to provide estimates of quantities for the
years up to the start of the LHC. Maintenance and short-term loans of equipment will probably
be handled by EP/ESS.

8.2.2 Read-out subsystem

8.2.2.1 High Level Design

The ROS has three major components: the RobIn, the IOManager and the LocalController.
Figure 8-2 shows the relationship between the three ROS components and any other relevant
TDAQ component. A complete high level design of the ROS can be found in [8-10], only a
summary is presented here.

The RobIn component provides the temporary buffering of the individual data fragments pro-
duced by the RODs. All incoming ROD event fragments are buffered for the duration of the
LVL2 trigger decision time. It thus needs to receive and buffer incoming ROD event fragments
at the full LVL1 trigger rate. The ROD event fragments are buffered The date In addition, also
sends on request the accepted ROD event fragments.

Due to these very demanding requirements the baseline RobIn is designed and implemented as
a custom hardware module. Section 8.2.2.2 describes the high level design of the RobIn compo-
nent and the results of measurements obtained with a prototype RobIn.

The main function of the IOManager is the servicing of requests for data by the High Level Trig-
gers. According to the criteria specified in the data request, the IOManager collects ROB frag-
ments from one or more RobIns and builds a ROS Fragment. This fragment is then sent to a
destination specified in the original request. It also receives from the High Level Triggers the re-
quest to release buffer space occupied by ROD event fragments. These event fragments have ei-
ther been rejected by the LVL2 trigger or successfully built by the Event Building. So as to
maximise the overall performance of the ROS, the design of the IOManager allows a number of
data requests and releases to be handled concurrently that is to say, it overlaps I/O operations
with the processing of requests.

In the baseline TDAQ implementation the IOManager units are implemented as multithreaded
software processes.

The LocalController also provides a single interface point between the ROS and the Online soft-
ware (configuration database, run control, message reporting, monitoring and process control).
In particular the LocalController is responsible for retrieving the relevant information from the
configuration database and sending it to the IOManager component. The IOManager also pro-
vides for the configuration, control and operational monitoring of its associated RobIns.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

80 8 Data-flow

As the IOManager and the RobIn components, the LocalController are organized in specific
units, each of which is connected to one or more IOManager units. In the TDAQ baseline imple-
mentation the LocalController is implemented as a multithreaded software processes.

In one of the possible future ROS deployment scenarios there would not be any IOManager
component and all the RobIn units would be directly visible outside of the ROS system. In such
a scenario all the control, monitoring, error handling functionalities provided by the IOManager
will have to be provided by the other components or sub-systems, i.e. LocalController and Da-
taCollection. No data multiplexing will be provided at the level of the ROS, and the different
systems will always have to send data requests to the individual RobIn units and handle the in-
dividual ROB Fragments coming back from all of them.

8.2.2.2 Design of the ROBIN

The RobIn is located at the boundary between the detectors and the ROS. It receives ROD event
fragments from a number of ROLs. Its basic functionality can be described by the following four
tasks:

Figure 8-2 Main ROS components and their relationship with the other TDAQ components.

�����

��������	
��
��

��� ��� ��� ���

����	���	� �� ��� �	�
�� ���

������	��

���

�
�
�	������	�

���

����
���
�����

����
���

���

�	�
��	���	����
���
�
���

�	���

�	���	�

��
���

���	��

�������
��	�
�

�	���	����

������

������	���

����
���

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8 Data-flow 81

• Receive ROD event fragments from the ROL

• Buffer ROD event fragments

• Send ROD event fragments, on request, to the High Level Triggers

• Release ROD event fragments, on request, from the buffer.

Figure 8-3 shows the context of the RobIn.

The baseline RobIn takes into account the experience and results of studies from previous pro-
totyping studies [8-12], [8-13] and the requirements on it are documented in the ROS-URD [8-9].
The final design of the RobIn will based on the final prototype whose complete design is docu-
mented in a set of documents [8-14], [8-15] and [8-16]. Here only a summary description is giv-
en.

Andreas: I intend to omit all the details of the function description which can be taken from HLDD and
DLDD.

Editor: A reduced description needs to be given here.

Andreas: Should we elaborate on the issues of changing the ROL to GE, multiplexing etc?

Editor: What we finally put here should reflect the baseline choice, not an either or.

Referring to Figure 8-4, the primary functions of the RobIn (receive, buffer, send and release) are
mapped onto a small number of specialised building blocks: ROL-IF - CORE - MEM - TDAQ-IF.
It supports two ROLs, the data from which are buffered in separate buffers. All functionality re-
lated to the receiving of ROD fragments from the ROLs are realised in an FPGA, the CPU han-
dles the issues related to management and monitoring.

The TDAQ-interface block implements two interfaces, a PCI bus and a network interface, allow-
ing various DataFlow architecture options to be studied. The design of the final RobIn can be re-
alised by removing (and not by adding) functionality, i.e. the PCI bus or network interface.

Figure 8-3 Context of the RobIn.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

82 8 Data-flow

The Software Interface [8-16] to the prototype RobIn is generic enough to allow the RobIn to be
studied in all DataFlow architectural options. The same basic services and messages are used in
all cases, and functionality particularly required for e.g. the network is encapsulated in appro-
priate modules. The software interface comprises mainly the definition of a set of services pro-
vided by the RobIn and the messages to request these services and to transfer the responses.

The ROS LocalController, via the IOManager, performs the configuration and control of the
RobIn via the TDAQ-interface block.

Andreas: Should we add more information about the production status?

Editor: It will be out of date at the time of print.

8.2.2.3 Implementation and performance

The baseline deployment of the ROS is shown in Figure 8-5.

Benedetto: for now I put the bus based ROS but this may change!!!!

It is deployed on two nodes: a ROS PC and a RobIn module. The former is a desktop PC run-
ning the Linux operating system and has at least one Ethernet connection for the purpose of
communication with the Online system. In addition, it has at least four 64 bit / 33 MHz and 3.3
V PCI slots. These slots are used to host the RobIn modules. Each RobIn node has two SLINK
input connections. The IOManager via the DC Message Passing interface receives data requests
and release messages, and returns ROS event fragments to the High Level Trigger components.
These communications occur via Ethernet.

Figure 8-6 shows an alternative way of deploying the same ROS components. In this case the
RobIn devices are now implemented on dedicated boards, e.g. VMEbus 9U, and the connection
with the ROS PCs is made through an Ethernet switch. The figure also shows that in this scenar-

Figure 8-4 Basic Functional Diagram.

RAMCPUFLASHCPLD

FPGA

BUFFER2

LINK2

BUFFER1

LINK1 MAC/PHY

BRIDGE

ROL1

ROL2

GE

PCI

J
T
A
G

Main Data Path
DF Control
Management
Board Control

(DF-CORE)

RAM

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8 Data-flow 83

io the LVL2 trigger requests data fragments directly from the RobIn modules, without passing
through the IOManager process.

Extensive measurement have been made on the performances of the ROS for the deployment
scenarios previously described, bus-based and switch-based, here only the main results are pre-
sented, the complete set of results can be found in [8-20].

Figure 8-7 shows the setup for the bus-based testbed. In this testbed an IOManager and a Local-
Controller process were deployed on a standard 2 GHz Xeon PC with a single processor and a
66 MHz / 64Bytes PCI bus, running RedHat Linux 7.3.

As the final prototype RobIns were unavailable at the time of these measurements, I/O with a
RobIn was emulated using a number of RACE boards [8-19] which have the same physical PCI
bus interface as the final prototype RobIn, and thus provide a very accurate emulation of the fi-
nal devices. The RACE boards were not connected to any external data source and were pro-
grammed to generate ROB Fragments on demand.

The testbed has been run both in a standalone configuration, where the IOManager was gener-
ating triggers internally and the produced ROS Fragments where sent nowhere, and in a config-
uration where the IOManager was receiving real data request messages from the network and
sending back the ROS Fragments to the requester process.

Figures 8-8 and Figures 8-9 show the maximum LVL1 rate that an IOManager was able to sus-
tain for different fractions of LVL2 and Event Building requests and for different number of

Figure 8-5 Baseline deployment of the ROS.

����������

�	

���
����������������

��������

	��������������

���

��������������������

��������

���������

 !����������

���
����������������

�	���

��"����##��

�����
���������

��"����##��

�	$������

����%���&��

�$�##������##���

�$�##���#

���
�'��������
����!�����

��%��

��%��

��%��

$�##���#

 �������

 �������

 �������

���'"�����

 (���)��#�#

 �������

�	����)��#�#

�����

�
��(�#

������*�'���������

�����������)��#�#

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

84 8 Data-flow

Figure 8-6 Alternative ROS deployment scenario.

Figure 8-7 Setup of the testbed for studying the bus-based ROS system.

�������������	���
��

�
����

�����������

����	������		��

�����������

�
�������

��	��������

������������������

����������������������

����������

�����

�����

�����

��������

�����������

������� ���������!��

���������!

"�����#�	���

�$��������

�������������	���
��

������	���

�	������%�����

���

�	��!��&#

�
�

"� �����

"� �����

"'���(�����

"� �����

�	��!

"� �����

"'��������(�����

���)������

������	�����)���������

�
����(�����

"� �����

�������������	���
��

���
��	���

��	�������
����

���

�������������	���
��

������

�����������

����	���
��		��

�����������

���������

��������������

�����

�����

�����

��������

� !

�
"����

����#��

$�
����%���
�

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8 Data-flow 85

RACE boards connected to it. As we had only 6 RACE boards available, we developed a soft-
ware simulation of the RobIn to allow the test of the IOManager performances with larger num-
bers of connected RobIn modules

The “software emulation” probably needs to be elaborated.

..

Figure 8-8 Maximum sustainable LVL1 rate for different fractions of LVL2 and Event Building requests, for a
standalone bus-based ROS connected to a different number of RobIn modules.

Figure 8-9 Maximum sustainable LVL1 rate for different fractions of LVL2 and Event Building rate of 3%, for a
standalone bus-based ROS with real I/O to other DataFlow components.

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12

ROI Volume [% of full event]

M
ax

. L
V

L
1

R
at

e
[k

H
z]

EB rate =1% of LVL1 rate

EB rate = 2% of LVL1 rate

EB rate = 3% of LVL1 rate

EB rate = 4% of LVL1 rate

ATLAS baseline conditions

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12

ROI Volume [% of full event]

M
ax

. L
V

L
1

R
at

e
[k

H
z]

EB rate =1% of LVL1 rate

EB rate = 2% of LVL1 rate

EB rate = 3% of LVL1 rate

EB rate = 4% of LVL1 rate

ATLAS baseline conditions

EB rate =1% of LVL1 rate

EB rate = 2% of LVL1 rate

EB rate = 3% of LVL1 rate

EB rate = 4% of LVL1 rate

ATLAS baseline conditions

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7

ROI Volume [% of full event]

M
ax

. L
V

L
1

R
at

e
[k

H
z]

2.4 GHz PC No I/O to L2 & EB

2 GHz PC with I/O to L2 & EB

ATLAS baseline conditions

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7

ROI Volume [% of full event]

M
ax

. L
V

L
1

R
at

e
[k

H
z]

2.4 GHz PC No I/O to L2 & EB

2 GHz PC with I/O to L2 & EB

ATLAS baseline conditions

2.4 GHz PC No I/O to L2 & EB

2 GHz PC with I/O to L2 & EB

ATLAS baseline conditions

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

86 8 Data-flow

Figures 8-10 shows how the simulation reproduces the measured results for up to 6 RobIn mod-
ules and the results that one obtains for a larger number of RobIns.

The system is thus shown to fulfil the requirements for the final ATLAS for up to XXXX PCI
RobIn modules connected to a same IOManager.

Figures 8-11 shows the setup for the switched-based testbed. The IOManager and a LocalCon-
troller process were deployed on a standard PC and the RobIns were emulated with a number
of FPGA emulators [8-21] that were programmed to receive data requests over the network
with the same message passing interface as the final RobIn prototype and to generate ROB
Fragments on demand. Similarly to the tests performed on the bus-based ROS, this testbed has
been operated both in a standalone configuration, where the IOManager was generating trig-
gers internally and the produced ROS Fragments where sent nowhere, and in a configuration
where the IOManager was receiving real data request messages from the network and sending
back the ROS Fragments to the requester process.

Figure 8-12 and Figure 8-13 show the maximum LVL1 rate that the system was able to sustain
for different fractions of LVL2 and Event Building requests and different number of connected
RobIn sources. Also in this configuration the system is shown to fulfil the requirements for the
final ATLAS, see SOME SECTION IN PART 1..

8.2.2.4 pROS

Main description here. Short addition in Chapter 9, "High-level trigger".

8.2.3 ROD crate data acquisition

The ROD is a sub-detector specific front-end element. It is located, in the event data flow, after
the first level of on-line event selection, between the Front-end Electronics (FE) and the ROS.
The ROD receives data from one or more Front-end Links (FELs) and sends data over the ROL

Figure 8-10 Maximum sustainable LVL1 rate for different fractions of LVL2 and Event Building requests for a
standalone bus-based ROS with simulated PCI RobIn input.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8 Data-flow 87

to the ROB. The ROD System covers all RODs and other functional elements at the same hierar-
chical level in the event data flow between the FE and the ROS. Those elements are grouped in
crates. The crates contain ROD Crate Modules (RCMs) which can be: RODs, modules other than
RODs, e.g. for control of the FE, for processing event data upstream of the RODs or for driving a
TTC partition, as well as not fully functional ROD prototypes in laboratory setups or at test
beam, and one or more ROD Crate Processors (RCPs). Each ROD Crate is connected to one or
more ROD Crate Workstations (RCWs).

The sub-detectors need common DAQ functionality at the level of the ROD Crate for single or
multiple ROD Crates in laboratory setups, at assembly of detectors, at test beam, and at the ex-
periment during commissioning and production. ROD Crate DAQ [8-17] is part of the TDAQ
system. It comprises all software to operate one or more ROD Crates and runs inside the ROD

Figure 8-11 Setup of the testbed for studying the switched-based ROS system.

Figure 8-12 Maximum sustainable L1 rate for different fractions of L2 and EB requests, for a standalone net-
work-based ROS connected to a different number of RobIn modules.

�������������	���
��

���
��	���

��	�������
����

���

�������������	���
��

������

�����������

����	���
��		��

�����������

���������

�����
����

����������	�
����

�� ��

�� ��

!����������

���� �
�"
�����

"
�����

#$$%

���
�"
�����

!�
����&���
�

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

88 8 Data-flow

Crate as well as on the RCWs. It provides the functionality for configuration and control, ROD
emulation, monitoring, calibration at the level of the ROD Crate, and event building across mul-
tiple ROD Crates.

8.2.3.1 High Level design

The ROD Crate configuration describes all necessary data required to fully configure all mod-
ules of the ROD Crate and the RCW(s). All ROD Crate configuration data are stored in one or
more databases with the configuration database of the Online Software being the driving one.
Several different ROD Crate configurations are stored in the database(s) concurrently. At initial-
isation of a run, one configuration is selected and loaded.

The ROD Crate control takes all necessary actions required to fully control all modules of the
ROD Crate and the RCW(s). It is based on the run control of the Online system and implement-
ed as a tree of run controllers, one per ROD Crate and others on the RCW(s) as necessary. The
ROD Crate controller (RCC) drives all RCMs of the ROD Crate into well-known states and in-
vestigates their status. It may require interaction with the TTC system and/or DCS.

The primary event data flow of the ROD Crate transports event data from the FE over the FEL,
the ROD and the ROL to the ROS. The secondary event data flow of the ROD Crate transports
sampled event data from the RODs over VMEbus, optional ROD Crate data collection, optional
ROD Crate event building, and ROL to the ROS, or optionally to data storage for recording.
ROD Crate DAQ provides collection of sampled event data from multiple RODs in the same
ROD Crate and building of sampled event data from multiple ROD Crates.

Some ROD prototypes are not fully functional RODs and some are non-ROD modules, in par-
ticular at test beam, have to be read out at the same hierarchical level in the event data flow as a
ROD. ROD emulation provides the missing functionality. ROD emulation may be based on the
primary or on the secondary event data flow. In both cases, an RCP is required.

Figure 8-13 Maximum sustainable L1 rate for different fractions of L2 and EB requests, for a network-based
ROS with real DC I/O.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8 Data-flow 89

Monitoring is another basic function of the ROD Crate DAQ. Different types of monitoring have
to be distinguished depending on the different types of monitoring data they are collecting.
Event data monitoring provides event data coming from the secondary data flow. Scaler and
histogram monitoring provides scaler and histograms derived from event data. Operational
monitoring reads operational values not directly derived from event data.

ROD Crate calibration provides sub-detector calibration at the level of the ROD Crate. It reads
all event data from the secondary event data flow, processes them and calculates calibration da-
ta. The calibration data are written to data storage for recording or to the calibration database.

ROD Crate event building is achieved by event building sources, one for each ROD Crate which
participates in the event building, and one event building destination. An event building source
is an output of a ROD emulation, monitoring or calibration activity. It sends all event data of the
secondary event data flow over Local Area Network (LAN) to the event building destination.
The event building destination is the input of a dedicated ROD emulation, monitoring or cali-
bration activity and usually runs on the RCW.

The basic functions of ROD Crate DAQ can be combined to provide high-level functionality for
physics and calibration runs. They can also be used in different setups for physics data taking,
ROD emulation, event building from multiple ROD crates, and small laboratory setups.

The framework of ROD Crate DAQ is organized into four layers: hardware, operating system,
low-level services, and high-level tasks. A call for tender for the hardware of the RCP is under
way. It is assumed that PCs will be used for the hardware of the RCWs. Linux is the first choice
of operating system. LynxOS will be used for the RCPs in case real-time performance is re-
quired. The low-level services, like libraries and drivers, are organized into three different lay-
ers for hardware access, high-level task support and support for the Online Software.

A ROD Crate DAQ task is a high-level task for ROD Crate controller, ROD emulation, monitor-
ing, calibration or event building. ROD Crate DAQ tasks are provided as skeletons made of ge-
neric functions which may be extended by the sub-detector groups. Some standard functions
are provided, e.g. for event building, which probably do not require extension.

The generic functions of the ROD Crate dataflow task are: the “input function” which reads
data from FEL, RCM or LAN, the “processing function” which processes and selects data, the
“output function” which sends data over the ROL or LAN, or to data storage, the “control func-
tion” which communicates with the ROD Crate controller, and the “monitoring/histogram-
ming function” which communicates with the monitoring/histogramming of the Online
Software. The specific tasks for ROD emulation, monitoring, calibration or event building are
distinguished by the implementation of their individual functions

8.2.3.2 Implementation

ROD Crate DAQ re-uses existing software where possible. The Online Software is used as is,
with some adaptation to sub-detector specific needs, in particular, for configuration. The ROD
Crate controller is adapted from the controller developed for the ROS. The ROS software is also
used to provide skeletons for the different tasks of ROD emulation, monitoring, calibration and
event building.

The initial software development involves several real users and ROD Crates containing ROD
prototypes as well as fully functional RODs. The workplan [8-18] allows for a first distribution
of ROD Crate DAQ to be available by June 2003.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

90 8 Data-flow

8.3 Boundary and interface to the level 1 trigger

Because ATLAS depends on data collection guided by RoIs the level 2 system needs informa-
tion from the level 1 trigger decision. This information includes both the triggers which passed
and the details of where, in eta and phi, the trigger primitives that caused the accept came from.
This requires information internal to the level 1 system to be passed on to the HLT. Collecting
this information and passing it on to the HLT is the responsibility of the RoIB.

Figure 8-14 shows the RoIB and its connections to the level 1 system. Since the level 1 accept rate
is fairly high as an input transaction rate for a single processor, the RoIB is designed to spread
the level 1 events over a small farm of processors which are referred to as supervisor processors.
The supervisor processors receive a single S-link record containing the summary information
for each event from the RoIB. Since the RoIB sends complete records to several supervisor proc-
essors no single processor has to deal with a full level 1 rate. The supervisors pass the level 1
data on to the level 2 processor that will make a decision on the event. The supervisors are re-
sponsible for a rudimentary form of load levelling. They are aware of the disposition of events
that they send to level 2 processors and need to make sure that events are dealt with in a timely
way. They also need to be assured that no single processor is overloaded with pending events.
The operation of the supervisors is described in the Section 9.2.3.

Figure 8-14 [reb001v000_lvl1lvl2.eps]

LVL1 calorrimeter trigger
(e/gamma and tau/h part)

LVL1 calorimeter trigger
(jet and energy-sum part) LVL1 muon trigger

LVL2 RoI Builder
LVL1 Central Trigger Processor

BUSY level (inhibit LV1 triggers)

L1L2 link (RoI information)
(includes XON/XOFF control)

Data on LVL1 decision path

KEY

Supervisor Processors

LVL1 event data (all LVL1 fragments
combined for the events included)

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8 Data-flow 91

8.3.1 Description

This sub section should be a summary of what is detailed in [8-27].

A block diagram showing the level 1 system and its interconnection with the RoIB is shown in
Figure 8-15. Each link from the level 1 system is an independent S-link input that sends a com-
pact description of the event for that component. Each link is limited to sixty three 32 bit words
or less per event. The various pieces of an event (referred to as fragments) will all arrive at the
RoIB within one millisecond of each other. The RoIB will assemble the event data and send it to
a supervisor processor which will then initiate the level 2 processing by passing a record to a
level 2 processor which includes the pertinent level 1 RoI data.

8.3.2 Region of interest builder

There is overlap with Chapter 9, "High-level trigger" on this component and only one chapter should de-
scribe it in detail with the other just mentioning the specifics for that chapter.

The RoIB is a VME based system which uses FPGAs to combine the level 1 fragments into a sin-
gle record. It is composed of two parts. A pair of cards buffer the level 1 input and direct frag-
ments to cards which assemble individual events. Twelve inputs are considered adequate. This
will include both the level 1 fragments and an independent TTC input to assure consistency be-
tween level 2 and the read-out system. The input cards will communicate over a dedicated
backplane connection to one or more ‘builder’ cards that provide four outputs for assembled
events. Figure 8-16 shows the system organization. The system can service four supervisors
with a single ‘builder’ card and can be expanded in units of four by adding ‘builder’ cards.

Figure 8-15 [reb001v000_lvl1block.eps]

Muon Trigger / CTP
Interface

Central Trigger Processor

TTC

Muon Trigger
(RPC based)

Muon Trigger
(TGC based)

Front-end Preprocessor

Cluster Processor
(electron/photon and
hadron/tau triggers)

Jet/Energy-sum
Processor

Calorimeter Trigger Muon Trigger

Endcap Barrel

RoI Builder

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

92 8 Data-flow

8.3.2.1 Detailed design

This sub section should expand on the High level design described in Section 5.5. It should be a summary
of what is detailed in [8-27].

8.3.2.2 Performance

Based on results with (12 U) prototype, including results of integration studies with Level 1.

A prototype of the RoIB was fabricated and tested in 1999. This version was built using a pair of
12U VME cards, an input card capable of handling six S-link inputs and a pair of builder cards
able to output to a pair of processors. This system utilized 76 Altera 10K40 FPGA’s and 8
10K50’s. Figure 8-17 shows the pair of boards that were built. The system and early performance
measurements are documented in [8-22].

This system was adequate to demonstrate a number of critical points. It showed that the idea of
combining records from several sources using an FPGA based device is feasible. It showed that
the communications overhead for processors would not result in unmanageable numbers of
processors just to handle the 100kHz event rate; four 300 MHz pentium two machines were ad-
equate to handle the 100kHz rate. Subsequent tests with several prototype pieces of the level 1
system (the muon-CTP interface and the calorimeter CPROD) made a start on debugging the
component interfaces and further demonstrated that external inputs could be handled at the ex-
pected rates [8-23].

The scale of a full system will need to be set in the future, but current indications from the early
prototype make it clear that the full system will involve the number of processors needed to sat-
isfy the HLT functions of the supervisors documented in the HLT description and testing sec-
tion plus a few processors (less than four) to cover the additional communications from the
RoIB.

Figure 8-16 RoIB System organisation.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8 Data-flow 93

8.4 Control and flow of event data to high level triggers

8.4.1 Message passing

8.4.1.1 Control and event data messages

Introduce the types of messages, the flow of messages, message rates and the bandwidths required. Con-
cluding with the choice of link technology.

The flow of event data from the ROS, where data are buffered during the LVL2 and event build-
ing latencies, to the HLT is achieved by the exchange of control messages and subsequent event
data messages between components of the DataFlow system. This is described in detail in [8-24]
and here only its major features are summarized. Figure 8-18 shows a sequence diagram detail-
ing the base interactions between DataFlow components.

8.4.1.1.1 L2SV

The LVL2 Supervisor receives LVL1 Results containing the RoI information from the RoI Build-
er. It assigns according to a load balancing algorithm a L2PU to analyse the event. It will then re-
ceive the LVL2 decision from the L2PU which it forwards to the DFM. In case no LVL2 decision
will be received within a pre-defined timeout (e.g. the L2PU crashed, or a message was lost), the
L2SV will treat the event as if accepted by the L2PU. There will be several L2SV deployed in the
final system.

A LVL1 Result message does not exceed 512 bytes [8-27], leading to a maximum bandwidth re-
quirement of O(50 MB/s) at 100 kHz LVL1 rate. This bandwidth can be handled easily with any

Figure 8-17 12U VME card prototype of the RoIB.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

94 8 Data-flow

gigabit capable link technology, furthermore, it has to be divided by the number of L2SVs de-
ployed.

8.4.1.1.2 2.2 L2PU

A LVL2 Processing Units receives a LVL1 result containing RoI Information from the L2SV,
which it uses to seed its processing algorithms. It requests specific RoI data from selected ROSs
for analysis, more RoI data is requested repeatedly until the sequential processing results in its
final decision to either reject or accept the event.

This includes also the decision whether an accepted event should be prescaled, or a rejected
event should become forced-accept. The L2PU then sends the LVL2 decision (accept, reject,
prescaled, forced-accept) back to the L2SV and in case of an (forced-) accepted event it also
sends a detailed record to the pseudo-ROS. There will be many hundreds of L2PUs deployed in
the final system.

As any individual L2PU processes events at a rate not higher than O(100 Hz), the bandwidth re-
quirement for receiving the LVL1 results are O(1 kB/s). However, the data rate of the received
RoI data can be substantial and is estimated to reach maximum values as high as O(10-20 MB/
s).

8.4.1.1.3 ROS

The Read-out System holds event data fragments inside Read-out Buffers (ROBs) and makes
them available to HLT, following data requests. The ROBs are cleared on receipt of clear mes-
sages.

The maximum bandwidth out of an individual ROB is estimated to O(10 MB/s) and data frag-
ments are requested at up to xxx kHz [8-25]. Depending on how many ROBs are hold in a ROS
and of the access mode to the ROBs, the ROS needs to provide O(Y MB/s) at a rate of yyy kHz.

Figure 8-18 Sequence diagram showing the interactions between DataFlow components

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8 Data-flow 95

8.4.1.1.4 2.5 pROS

The Pseudo-ROS receives the detailed result records of the L2PUs for accepted events and par-
ticipates to the event building process, such that the LVL2 detailed result appears within the full
event record. From the point of view of the SFI there is no difference between the pROS and a
normal ROS component. However, the pROS has no detector specific input at all and requires
no special hardware like e.g. a ROBIn.

Given a LVL2 accept rate of O(2 kHz) and an estimated size of the LVL2 detailed result record of
O(1 kByte), the bandwidth in and out of the pROS will be a O(2 MB/s). One pseudo-ROS will
therefore be sufficient for the final system.

8.4.1.1.5 2.6 DFM

The Dataflow manager receives (grouped) LVL2 decisions from the L2SVs and assigns an SFI,
following a load balancing algorithm, for the event building of every accepted event. It multi-
casts the (grouped) clear messages to all ROSs (incl. pROS).

The bandwidth requirements for the exchange of control messages with the DFM are small, giv-
en the grouping factor of the LVL2 decisions is O(100) results at a LVL1 rate of 100 kHz to
O(1 kHz) for the reception of the LVL2 decision messages. The communication with the SFI
adds an additional two times O(2 kHz) message rate. The distribution of the clear messages
from the DFM to the ROSs will also be grouped. with an assumed grouping factor of O(300),
only O(300 Hz) of message rate will need to be added - given a multicast mechanism for the dis-
tribution of clear messages. The total message rate to be handled by the DFM is therefore
O(6 kHz); only small messages O (few 100 Bytes) need to be exchanged, leading to an aggregat-
ed bandwidth requirement of O(3 MB/s) to be handled by the DFM.

8.4.1.1.6 SFI

The SubFarm Input assembles event fragments from the ROSs (incl. pROS) and serves these to
EventFilter SubFarms. It is the event building component in the DataFlow system and has to
stand relatively high data and control rates, and conversely the bandwidth (for the data). The
event size for complete events is O(2 MB) and the event building rate O(2 kHz), resulting into
an aggregated bandwidth requirement of O(4 GB/s). This load needs to be distributed over
many SFIs. Assuming an event building rate of O(50 MB/s) handled by one SFI, O(80) SFIs,
each building events at O(40 Hz), will need to be deployed in the final system. The message rate
to be handled by an SFI depends on the number of ROSs deployed, and is O(40 Hz) times two
times the number of ROSs. It will not be above O(64 kHz) in case of 1600 ROS deployed.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

96 8 Data-flow

For the communication with the EventFilter SubFarms, only a few messages need to be ex-
changed per event. However, a bulk transfer of the full event record is needed.

None of the afore mentioned messages require rates and bandwidth which cannot be handled
by a wide range of link technologies. A commodity solution of widely available products on the
world market can be deployed. Here the choice is dictated by price, long term availability, sup-
port, inter-operability and suitability for ATLAS DataFlow. Ethernet in its varieties of 100 Mb/s
and 1000 Mb/s is the prime candidate and has been evaluated to prove its suitability for ex-
change of control and event data messages in the Atlas DataFlow.

8.4.1.2 Ethernet

This section should introduce the key features (i.e. VLANS, QoS, switches, flow control) supporting its
selection and how they will be used. Should also summarise, based on [8-29], the basic message passing
capabilities in terms of achieved rates, overheads and CPU loads.

8.4.1.3 Design of the message passing component

Presents the main features of the design (high Level enough?) based on [8-30].

8.4.1.4 Performance of the message passing

Presents, based on [8-29], the performance of the message passing component in terms of achieved rates,
overheads and CPU loads.

The message passing layer of the data flow software is responsible for the transfer of all control
and event data between different components. It provides a common technology-independent
API across all applications.

The message passing layer itself imposes no structure on the data which is exchanged. Rather,
this structure is defined by the message types in [see Section 8.4.1.1] which can be changed
without affecting the message passing per se.

The service it provides is the transfer of up to 64 kByte of data with only a best-effort guarantee.
No re-transmission or acknowledgement of data is done by this layer. This allows to implement
the API over a wide range of technologies without imposing un-necessary overhead where not
needed or duplicating existing functionality. The API supports the sending of both unicast and
multicast messages. The latter has to be emulated by the implementation if it is not available
(e.g. for TCP).

The message passing layer interface has been implemented over raw ethernet frames, UDP and
TCP. The latter two implementations are technology-independent per se, although systematic
measurements were only done for switched ethernet configurations (i.e. the routing aspects of
IP are not necessary for the ATLAS architecture). TCP provides additional reliability compared
to UDP and raw ethernet. However, applications and message flow have been designed in such
a way that the system will still work when running over an unreliable technology. The raw eth-
ernet implementation adds message re-assembly on the receiver side, similar to what IP pro-
vides. Otherwise the maximum message size would be restricted to a single ethernet frame
which was seen as too restrictive for the range of data sizes intended.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8 Data-flow 97

Internally all implementations support scatter/gather transmission and reception of data. This
allows to build a logical message out of a message header and additional user data that doesn’t
need to be copied inside the application.

The basic operations of allocating and de-allocating a buffer to send or receive are dominated by
the need to make the interface thread-safe. On a 1 GHz dual processor SMP machine they take
in the order of 0.6 µs each. Since they require main memory access on a real multiprocessor sys-
tem this does not scale with the CPU frequency but with the memory speed. On a 2.2 GHz ma-
chine the numbers are only slightly smaller.

The basic measurements can be compared to the direct socket measurements of [see
Section 8.4.1.2]. Note that the latter are done in a single-threaded environment without any dy-
namic memory allocation and always send and receive data from a fixed location and with a
fixed size that is known in advance. Raw ethernet measurements are only done with a maxi-
mum of 1460 bytes, since no re-assembly of larger packets has been implemented. They there-
fore provide an upper bound for the possible performance which we don’t expect to reach with
the additional functionality in the message passing layer.

Among the reasons for lower performance are:

• Support for scatter/gather operations requires the kernel to copy an additional user data
structure across kernel boundaries.

• The varying message length supported by the message passing API requires at least two
read system calls for TCP, and two read system calls for every raw ethernet packet [check
with David Botterrill, maybe just for first packet].

• For raw ethernet the re-assembly of frames into large messages.

• Thread-safety for the sender side: multiple threads can send at the same time as long as
their destinations differ. They are serialized when they both send to the same destination.

Problems with scalability are only expected for the TCP implementation where a potentially
large number of open sockets has be handled. The default TCP code uses the select() system call
which is known not to scale. However, alternatives are available either in the form of POSIX
conforming real-time signal in combination with non-blocking sockets or in a non-standard
form by ongoing developments in the latest Linux kernel (epoll() interface[ref]). The UDP and
raw ethernet implementations use only a single socket for receiving data.

Repeating the measurements for request/response and streaming shows an overall overhead of
about 10 µs compared to the low-level tests. This translates into a time of about 22 µs to serve an
incoming message or a rate of 45.5 kHz for receiving. These numbers are for a dual 2.2 GHz ma-
chine and require proper settings of socket buffer space and interrupt coalescence for the driver.
E.g. with default settings for the interrupt coalescence this rate drops to 7 kHz. The difference
between the various implementations are negligible: they are about 22.9 µs for UDP and 21.09
µs for raw ethernet.

Finally we can compare the numbers measured above with the observed rates of one of the ap-
plications in the data flow. The SFI application can do event building with raw ethernet frames
at an overall rate that corresponds to a 40 kHz of data packages (ca. 1400 bytes) input and 40
kHz of requests (<64 bytes) output rate [8-32] which is in overall alignment with the low-level
measurements.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

98 8 Data-flow

8.4.2 Data collection

8.4.2.1 General overview

This section describes the common model to collecting data for level 2 processing and event building.

DataCollection is a subsystem of the Atlas TDAQ DataFlow system responsible for the move-
ment of event data from the ROS to the LVL2 Processing and to the EventFilter and also to
MassStorage. See.

It includes the movement of the LVL1 RoIs to the LVL2 PU (via the LVL2 SuperVisor) and the
LVL2 result (decision and detailed result) to the EventFilter as well as the EventBuilding and
feeding the complete events to the EventFilter.

However, DataCollection is not responsible for initializing and formatting (or preprocessing) of
event fragments inside the ROS, neither is it responsible to do preprocessing nor to perform
trigger decisions in the LVL2 Processing Unit or in the EF SubFarm.

Figure 8-19 shows a context diagram of the two main components of DataCollection (LVL2 Da-
taCollection and EventBuilding) and its interfaces to other systems and subsystems of Atlas
TDAQ.

The following lists the applications to be provided by DataCollection:

L2SV LVL2 SuperVisor

Figure 8-19 DataCollection context diagram.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8 Data-flow 99

L2PUA LVL2 Processing Unit Application (i.e. L2PU low layer functionality)

DFM DataFlow Manager

pROS Pseudo ROS

SFI SubFarm Input

SFO SubFarm Output

In order to deploy this variety of components, a common approach in design and implementa-
tion is envisaged. This approach lead to the definition of the common DataCollection frame-
work, implementing a suite of common services. These were found to be:

• OS Abstraction Layer

• Configuration Database

• Error Reporting

• System Monitoring

• Run Control

• Message Passing

All applications in the DataCollection software share the need for a common set of typical oper-
ations. This includes error logging, configuration, system monitoring, run control and message
passing. All these capabilities are provided by a set of packages which is usually referred to as
the DataCollection Application Framework. This design leads to a large code reuse in practice.
A typical application is built on top of a skeleton application and only has to provide the actual
additional functionality.

Services are built from packages following a modular approach. Many of these packages consist
of interfaces only, whose implementation is provided by other packages which can be changed
at configuration or run-time. Examples are the error reporting (switching between simple std-
out/stderr and MRS), the configuration database (switching between OKS files and remote da-
tabase server), the system monitoring (providing an interface to the Information Service of the
Online Software and a local independent version). The message passing interface allows the
concurrent existence of multiple implementations at the same time. E.g. all of UDP, TCP and
raw ethernet sockets can be used by a single application in a given setup.

This clear separation between interfaces and implementations exists down to the lowest levels
like the thread interface and access to clocks and timers.

8.4.2.1.1 OS Abstraction Layer

The OS abstraction layer consist of packages hiding all OS specific interfaces. E.g. the threads
package hides the details of the underlying POSIX thread interface.

8.4.2.1.2 Error Reporting

The ErrorReporting package allows to log error messages either to stdout/stderr or to MRS.
Each package can define its own set of error messages and error codes. Error logging can be en-
abled/disabled on a package by package basis, with a separate debug and error level for each
package. Furthermore debug logs and normal error logs are treated logically differently, so the

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

100 8 Data-flow

debug message could go to stderr while all normal application logs go to MRS. The user only
interfaces via a set of macros to the ErrorReporting system. This allows to compile out the de-
bug macros for optimized builds.

8.4.2.1.3 Configuration Database

All applications make use of the Online Software configuration database through the API pro-
vided by these packages. The design uses the Bridge pattern described in Gamma et al. This al-
lows to change the underlying implementation without the client code noticing it.

The user’s view of the database is hidden by configuration objects, which read the database and
provide a more convenient way to access the information. Database schema file evolutions are
coped with an automated re-creation of the C++ code for these configuration objects out of the
schema file only

8.4.2.1.4 System Monitoring

This package allows every component to make arbitrary information available to some outside
client. In practice this is used to publish statistics like counters and histograms. Users inherit
from the Resource class and implement a virtual function. The packages makes this information
available in various different ways, including the Information Service of the Online Software.

Again the interface is strictly separated from the different implementations, so users are una-
ware of it and the implementation can change without them noticing it.

8.4.2.1.5 Run Control

The run control interface is responsible for translating the requests from the Online Software
about state changes into commands for the application. It also provides a skeleton around
which one can build an application.

These classes realize most of the use cases for run control. They talk to a special DataCollection
Run Controller on the one side and to user code on the other side.

8.4.2.1.6 Message Passing

The Message Passing Layer defines a couple of classes to allow the sending and receiving of
messages. The Node, Group and Address classes are used at configuration time to setup all the
necessary internal connections.

The Port class is the central interface for sending data. All user data has be in part of a Buffer ob-
ject to send or receive it. The Buffer interface allows to add user defined areas which are not un-
der the control of the Message Passing layer to avoid copying.

The Provider class is an internal interface from which different implementations have to inherit.
Multiple Provider objects can be active at any given time. A Provider is basically the code to send
and receive data over a given protocol/technology, e.g. TCP, UDP or raw ethernet.

Using the DataCollection Application Framework, the DataCollection components were imple-
mented efficiently with maximum reuse of code and coherency in system aspects.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8 Data-flow 101

The interaction of the DataCollection components is detailed in the following to sections for
LVL2 DataCollection and event building.

8.4.2.2 RoI data collection

8.4.2.2.1 Design

This section should describe the interaction between applications which results in the collection of data at
the level 2 processing unit.

8.4.2.2.2 Performance

8.4.2.3 Event Building

8.4.2.3.1 Design

This section should describe the interaction between applications which results in the collection of event
fragments to form a complete event at the SFI. Should also include the aspects related to traffic shaping.

8.4.2.3.2 Performance

Text still to be provided

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

102 8 Data-flow

Figure 8-20 Event Building 1.

ATLAS event building rate

raw ethernet frames
udp

ATLAS event building rate

raw ethernet frames
udp
raw ethernet framesraw ethernet frames
udpudp

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8 Data-flow 103

Figure 8-21 Event Building 2.

Figure 8-22 Event Building 3.

0

10

20

30

40

50

60

0 2 4 6 8 10

#ROLs/ROS

E
B

 r
at

e
H

z

���������

EB only

Throughput

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

104 8 Data-flow

Figure 8-23 8 ROLs/ROS 4.

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10

of SFIs

Limit of 16 ROS emulators for
single frame messages

8 ROLs/ROS Flow Control

1 ROL/ROS No Flow Control

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10

of SFIs

Limit of 16 ROS emulators for
single frame messages

8 ROLs/ROS Flow Control

1 ROL/ROS No Flow Control

Limit of 16 ROS emulators for
single frame messages

8 ROLs/ROS Flow Control

1 ROL/ROS No Flow Control

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

8 Data-flow 105

8.5 Reliability and fault tolerance: this section has been moved to Chapter 6, "Fault Tolerance and Error
Handling"

8.5 Configuration, control and operational monitoring

The sub-sections in this section have been moved to other chapters.

Local Controller: moved to Chapter 12, "Experiment Control".

Configuration data: moved to Section 10.4, "Databases".

Operational monitoring: moved to Chapter 7, "Monitoring"

8.5 Scalability

8.5.1 Detector read-out channels

This section describes quantitatively how the physical size, performance and control and configuration of
the system scales with the “amount” of detector to be read-out.

8.5.1.1 Control and flow of event data

How the number of applications, messages and data volume changes.

8.5.1.2 Configuration and control

Amount of configuration data a function of the amount of detector.

8.5.2 Level 1 rate

How the system performance and physical size scales with respect to the level 1 rate.

8.6 References

8-1 Trigger & DAQ Interfaces with Front-End Systems: Requirement Document http://
atlasinfo.cern.ch/Atlas/GROUPS/DAQTRIG/DIG/archive/document/FEdoc_2.5.pdf

8-2 ATLAS High-level Triggers, DAQ and DCS Technical Proposal, CERN/LHCC/2000-17,
31 March 2000.http://atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/SG/TP/
tp_doc.html

8-3 The S-LINK Interface Specification. http://edmsoraweb.cern.ch:8001/cedar/
doc.info?document_id=110828

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

106 8 Data-flow

8-4 The raw event format, http://atlasinfo.cern.ch/Atlas/GROUPS/DAQTRIG/ROS/DAQ-
1_Note_050_update_1a.pdf

8-5 Recommendations of the Detector Interface Group - ROD Working Group https://
edms.cern.ch/document/332389/1

8-6 The CMC standard. Common Mezzanine Cards as defined in IEEE P1386/Draft 2.0 04-
APR-1995, Standard for a Common Mezzanine Card Family: CMC (the CMC Standard).

8-7 Design specification for HOLA, https://edms.cern.ch/document/330901/1

8-8 Procedures for Standalone ROD-ROL Testing, G. Lehmann et. al., 27 July 2001, ATC-TD-
TP-0001 http://edmsoraweb.cern.ch:8001/
cedardoc.info?document_id=320873&version=1

8-9 ROS URD

8-10 Read out system high level design

8-11 ROS Local Controller

8-12 ROBIN Summary document

8-13 Readout sub-system test report (using DAQ -1.

8-14 ROBIN HLDD

8-15 ROBIN DLDD

8-16 ROBIN SWID

8-17 ROD crate DAQ design

8-18 ROD crate DAQ workplan

8-19 Reference to the RACE board

8-20 ROS Test Report

8-21 Reference to FPGA emulators

8-22 ATL-DAQ-99-016

8-23 cite ATL-DA-ER-0016 & the corresponding muon-CTP i/f document

8-24 Data collection note # 012... to be moved into EDMS

8-25 Paper model results

8-26 Data Collection URD

8-27 Level 1 - Level 2 interface document

8-28 RoI Builder URD

8-29 Results of basic comms tests

8-30 Design of the message passing component

8-31 Documents supporting technology choices

8-32 DataCollection test report

8-33 DataCollection Local Controller

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger 107

9 High-level trigger

9.1 HLT Overview

The figure shows how the subsystems collaborate by an exchange of messages. In the online
system the LVL2 selection is done in the LVL2 processing unit and the EF selection in the event
handler. Both, LVL2 and EF, are situated in dedicated processor farms. The communication of
the LVL2 processing unit is different in nature from the communication of the event handler.
LVL2 receives the LVL1 result from the LVL2 supervisor. LVL2 is ROI guided and only requests
the corresponding fragments of the events from the ROS. The data is read out of the read out
buffers (ROBs), which hold the event data after the LVL1 accept. After a positive LVL2 decision
the event building collects all fragments, including the LVL2 result. The full event is sent via the
event filter IO to the event handler, where the EF selection is made. Accepted events are sent to
the data base loader for permanent storage of the event for offline reconstruction and analysis.

9.2 Level 2

9.2.1 Overview

Includes use RoI mechanism (i.e. selective Read-out), requirements and interplay between com-
ponents.

<<subsystem>>
LVL2Supervisor

<<subsystem>>
LVL2Processing

Unit

<<subsystem>>
ROS

<<subsystem>>
EventBuilding

<<subsystem>>
DataBaseLoader

<<subsystem>>
EventHandler

<<subsystem>>
EventFilterIO

4:send(LVL2Decision)

2:LVL2Selection() 8:EFSelection()

1:send(LV
L1R

esult)

3.2:send(LV
L2D

ecision)

5.
1:

Req
ue

st(
Eve

nt
Fra

gm
en

ts)

2.
1:

Req
ue

st(
Eve

nt
Fra

gm
en

ts)

3.
1:

Sen
d(

LV
L2

Det
ail

ed
Res

ult
)

2.
2:

Sen
d(

Eve
nt

Fra
gm

en
ts)

6:S
end(E

vent)
7:S

end(E
vent)

9:S
end(E

vent)

10:Send(Event)5.
2:

Sen
d(

Eve
nt

Fra
gm

en
ts)

LVL2 Selection and
EF Selection accepts

or rejects event.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

108 9 High-level trigger

9.2.2 RoI Builder

There is overlap with Chapter 8, "Data-flow" on this component and only one chapter should describe it
in detail with the other just mentioning the specifics for that chapter.

Main description of design, implementation, interfaces etc should be in Chapter 8 (DataFlow). Here lim-
ited to a brief description of the functions (i.e. gathering together of the LVL1 RoI information and then
routing to a Supervisor processor)

9.2.3 LVL2 Supervisor

Main description of functions, design and implementation here in this chapter, should refer back to the
DataCollection Framework described in Chapter 8. The description here to include the load balancing as-
pects. (The DataFlow chapter should be limited to a description of function of the Supervisor in DataFlow
and the rate at which it handles messages - i.e. the performance measurements (30 kHz rate).)

9.2.4 LVL2 Processors

Need a description of how the software inside a LVL2 processor is structured. i.e. L2PU hosting the PSC,
which hosts the event selection code. Also how the algorithms access data from the ROB’s with the inter-
face layers provided between the algorithm and the L2PU. Diagrams to be included here are ones showing
the multi-threaded nature of the Worker threads and the sequence diagram of what happens during con-
figuration and in the event loop.

Should include a statement about the possible use of FPGA’s here with a reference to the FPGA imple-
mentation back-up document, but note that this is not included in the baseline option.

9.2.4.1 L2PU

The design and implementation of the L2PU is based on the DataCollection Framework de-
scribed in xyz from which it uses the following services: application control, initialisation &
configuration, error reporting, application monitoring, message passing, and, for the purpose of
performance evaluation, the instrumentation.

The L2PU communicates with the LVL2 Supervisor from which it receives the RoI information
(originating from the LVL1 Trigger) and to which it returns the LVL2 Trigger decision. RoI Data
(in the form of RoB fragments) is requested from the ROSs, on instigation of the LVL2 Selection
algorithms. For positive decisions, a LVL2 Result is sent to the pROS.

The actual selection algorithms runs inside one out of several ‘Workerthreads’, each processing
one event. This multi-threaded approach has been chosen to avoid stalling the CPU when wait-
ing for requested RoI data to arrive (from ROSs). This also allows efficient use of multi-CPU
processors but LVL2 selection algorithms must be thread-safe. Specific guidelines to developers
are given in [9-7]. Some asynchronous services (application monitoring, input of data) are also
executed in separate threads.

The ‘RobDataCollector’ is a service that takes a ‘list of RoBs’ as input parameter and returns a
‘list of RoB fragments’. The RobdataCollector takes care of sending out requests for data to the

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger 109

appropriate ROSs, waits for all data to arrive, assembles the received ROS fragments into a list
of RoB fragments which are returned to the caller.

The LVL2 event selection takes place inside the PSC (PESA Steering Controller) which has a
simple interface to the DataCollection framework: it receives the LVL1 RoI information (‘LVL1
Result’) as input parameter and it returns the LVL2 result. Selection algorithms that need RoI
data activate the ‘RobDataCollector’.

Figure 9-1 illustrates what happens for each event. The LVL2 Supervisor selects the L2PU with
the smallest number of outstanding events and sends the LVL1 RoI information. This ‘sched-
ules’ the L2PU which stores the received LVL1 Result in a shared queue. Any available Worker-
thread unqueues the event, starts processing it, derives a LVL1 Decision from the LVL2 Result
which is returned to the LVL2 Supervisor. For positive decisions, the LVL2 Result is also sent to
the pROS.

The collection of RoB data is shown in Figure 9-2. The DataCollector is takes a ‘list of RoBs’ as
input parameter and returns a ‘list of RoB Fragments’. The DataCollector takes care of sending
out requests for data to the appropriate ROSs, waits for all data to arrive, assembles the received
ROS fragments into a list of RoB fragments which are returned to the caller.

The LVL2 event selection takes place inside the PSC (PESA Steering Controller) which has a
simple interface to the DataCollection framework: it receives the LVL1 RoI information (‘LVL1
Result’) as input parameter and it returns the LVL2 result. Selection algorithms that need RoI
data activate the DataCollector. The PSC must be state aware and respond to run control com-
mands of the L2PU.

The DataCollection performance has been measured in testbeds. It exceeds by a large margin
the required I/O capacity. The performance is illustrated in Figure 9-3 (RoI building, scaling)..

Figure 9-1 Collaboration diagram showing the successive steps that are applied to each event received from
LVL1 leading to the LVL2 Decision.

LVL2 Supervisor

Input Handler

1:LVL1 Result

9:LVL2 Decision

2:LVL1 Result
Queue

Worker

3:get 4:LVL1 Result

Steering Controller

5:LVL1 Result

8:LVL2 Decision

LVL2 Selection

6:LVL1 Result 7:LVL2 Decision

Data Collection HLTThe whole gray area
represents the L2PU

There could be many
"Workers" querying
the queue. The "Workers"
have to be "thread-safe".

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

110 9 High-level trigger

Figure 9-2 Data Collection. Provisional! The two diagrams need to be merged into a simpler (collaboration?)
diagram with less technical detail.

<<subsystem>>
LVL2Supervisor

<<subsystem>>
LVL2Processing

Unit

<<subsystem>>
ROS

<<subsystem>>
EventBuilding

<<subsystem>>
DataBaseLoader

<<subsystem>>
EventHandler

<<subsystem>>
EventFilterIO

4:send(LVL2Decision)

2:LVL2Selection() 8:EFSelection()

1
:se

n
d

(L
V

L
1

R
e

su
lt)

3
.2

:se
n

d
(L

V
L

2
D

e
cisio

n
)

5.
1:

Req
ue

st(
Eve

nt
Fra

gm
en

ts)

2.
1:

Req
ue

st(
Eve

nt
Fra

gm
en

ts)

3.
1:

Sen
d(

LV
L2

Det
ail

ed
Res

ult
)

2.
2:

Sen
d(

Eve
nt

Fra
gm

en
ts)

6
:S

e
n

d
(E

ve
n

t)
7

:S
e

n
d

(E
ve

n
t)

9
:S

e
n

d
(E

ve
n

t)

10:Send(Event)5.
2:

Sen
d(

Eve
nt

Fra
gm

en
ts)

LVL2 Selection and
EF Selection accepts

or rejects event.

DataCollector
collect()

ROSMapper

build_request()

InputDispatcher

register_handler(ROSRequest::xid())

Port

find(ROSRequest::ros_id())
port

send(): serialisation

This processing phase
will reset the working
environment

for all ROSRequests

ROBData(s)

Lock

«create»
when free

replies have arrived

l2pu

wait on condition

condition was signaled

ROSRequest

«create»
next_xid()

for all ROS’s

vector<ROSRequest>

ErrorWord

send(m_data)

ErrorWord

ROSReply

fill(vector<const ROBData>&): deserialisation

This will deserialise
the buffer in a way
it doesn’t copy the
buffer contents.

for all ROSReply’s

dcmessages msginput threadmsg

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger 111

9.2.4.2 PSC (PESA Steering Controller)

The PESA Steering Controller (PSC) is the HLT component that interfaces the L2PU and the
LVL2 event selection software. The mission of the PSC is threefold: it allows the L2PU to host
and control selection software developed in the offline framework; it allows the algorithm steer-
ing software to be shared with the Event Filter; and it provides a mechanism for transmitting
the LVL1 and LVL2 results between the dataflow system and the PESA software.

The key to the PSC design is to place this interface where the functionality of the dataflow and
event selection frameworks can be cleanly separated. One such location is the Finite State Ma-
chine (FSM) of the L2PU. The PSC can then be realized as a local “state-aware” replica of the
Data Collection’s FSM. It thus provides the means for forwarding state changes from the data-
flow software to the PESA software. Since the HLT event selection software is being developed
in the offline framework Athena [9-8], which is itself based on Gaudi [9-9], the PSC has been
designed [9-10] to re-use the framework interfaces defined in Gaudi.

Figure 9-4 illustrates the sequence of interactions of the PSC with the dataflow and the PESA
software. The figure shows three states: Configure, Start, and Stop. During the Configure phase,
configuration and conditions metadata is obtained from external databases via an HLT-online
interface. These data are then used to configure the PESA software and all associated compo-
nents. As Figure 9-4 (left) shows, during this phase multiple Worker Threads are also set up. Af-
ter a Start, the PSC receives an ‘execute event’ directive with a LVL1 result as an argument. The
PSC then returns (after execution of the PESA selection software on the event) the LVL2 result
directly to the Data Collection framework.

An important aspect of this approach is that the LVL2 event handling is managed entirely by
the Data Collection framework. The PSC then does not need to interact directly with the input
thread, the Level-2 supervisor, or with the pROS. The requests for event data fragments are hid-
den behind the DataManager.

Figure 9-3 L2PU data Collection Performance.

Placeholder for a plot showing RoI Building Performance.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

112 9 High-level trigger

After a Stop, the PSC terminates algorithm execution. At this stage, run summary information
can be produced for the selection process.

Since the event selection software executes in multiple worker threads, the PSC must provide a
thread-safe environment. At the same time, and in order to provide an easy-to-use framework
for offline developers, the PSC must hide all technical details of thread handling and locks.
Thread safety has been implemented in the PSC by using Gaudi’s name-based object and serv-
ice bookkeeping system. Copies of components that need to be thread-safe are created in each
worker thread with different labels. The labels incorporate the thread-ID of the worker thread,
as obtained from the Data Collection software. The number of threads created by the Data Col-
lection software is transferred to the PSC, which transparently creates the number of required
copies. In this scheme, the same configuration can be used in the offline and in the LVL2 envi-
ronments; the thread-ID collapses to null in the offline software.

After integrating the PSC with the DataCollection software, both performance and robustness
tests were carried out on a dual-processor 1.533 GHz Athlon machine (for details, see [9-10]).
The PSC ran for over 50 hours with three threads with an early selection software prototype [9-
11]. The prototype ran successfully on both single- and double-CPU machines, showing it to be
thread safe. A direct measurement of the PSC overhead yielded 13 microseconds per event, well
within the 10 millisecond nominal LVL2 budget.

9.2.4.3 Data access i/f’s

Access to data from the HLT software is explained in section 9.4 . The same interface is seen by
Offline, EF and LVL2 but a specific implementation of the LVL2 ROBDataProvider interfaces to
the LVL2 DataCollector as shown in Figure 9-5..

Figure 9-4 The L2PU Finite State Machine (left) and the PESA Steering Controller (right). Provisional, figure is
being updated!

UnLoad

UnConfig

Stop

Start

Config

Load

Worker Thread

Event Selection

Steering
Controller

Config.
Manager H

LT
-D

C
 I/

F

H
LT

-O
nl

. I
/F

AppControl

In
pu

t D
is

pa
tc

h

S
up

er
vi

so
r

ps
eu

do
R

O
S

Selection SW
Steering / DM

CONFIG
get configuration

configure

CONFIG

L1ResultL1Result

L2ResultL2Result

DataRequest

Data

NextEvent

L2Decision
L2Result

NextEvent
EoR

EoR

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger 113

9.2.5 pROS

Main description is in Chapter 8, "Data-flow". Here just a brief note to describe the function from an
HLT perspective. i.e. The mechanism to receive the LVL2 result for inclusion in the built event - thus
passing the result from LVL2 to the EF.

9.2.6 LVL2 Operation

Here a brief description of how the LVL2 processors are configured, controlled and monitored, how they
are organised into sub-farms and how the farm-fabric is managed.

9.3 Event Filter

The Event Filter (EF) is the third and last step of the selection chain. It makes use of the full
available information. It will use the offline framework (ATHENA) to execute filtering algo-
rithms which will be taken directly from the offline suite.

9.3.1 Overview

9.3.1.1 Functionality

The functionality of the EF has been logically distributed between two main entities:

• •the Event Handler (EH) in charge of performing the activities related to event selection. This includes
the data flow between the main DAQ system and the EF as well as between the different steps of the se-
lection itself. It also includes the framework to run the processing tasks (PT).

Figure 9-5 LVL2 ROBDataProvider. A LVL2 specific implementation of the ROBDataProvider Service provides
a unique interface to the HLT Data Access to Offline, EF and LVL2 but interfaces to the LVL2 DataCollector.

ROBData
ProviderSvc DataCollector

HLT
Data Access

ROBFRagments

ROBFRagments

collect(LVL1Id, list of ROBIds)

getROBData(list of ROBIds)
there exists an
offline and LVL2
implementation

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

114 9 High-level trigger

• the Supervisor in charge of the control operations, in co-ordination with the overall
TDAQ control system. Its responsibilities encompass also the monitoring of the EF func-
tionality.

Some extra functionality may be possibly added to the EF. Examples of such extra activities are
the global monitoring of the detectors or tasks related to alignment and calibration. Although
those tasks have not yet been formally assigned to the EF, care has been taken so that they can
be easily plugged in the EF context without jeopardising the selection activity.

9.3.1.2 Operational analysis

The operational analysis of the whole HLT has been described in a dedicated document [1]
which describes in details the expected functionality and gives uses cases for the operation.

In the case of the EF, use cases are separated between the following sections:
(Note: each of these bullets could be developed to give more details on the operations)

• the start-up operations, which tentatively gives the list of the different operations which should be nec-
essary to set the HLT processing farms in operation.

• the Run Control related operations, which illustrates how the EF will cope with the Start of Run, End of
Run, Pause, Resume and Checkpoint commands in their present understanding.

• the shutdown operations which tentatively gives the list of the different operations which should be nec-
essary to set the HLT processing farms back into the non-existent state

• the steady operation actions, which are the list of the operations which should not imply to formally
stop the data taking process, but are rather associated with the checkpoint procedure. This includes
changing the trigger menu during a given spill as well as modifying the computing power of the EF (by
adding or removing CPUs in the farm).

• unsolicited events: this section is a first approach to error management in the EF. More information on
error handling in EF can be found in Chapter 6 of the present document.

9.3.2 Event Handler

A detailed list of requirements can be found in [2]. This list is based on the analysis of con-
straints coming from other systems and on some first and general uses cases. A summary of
these requirements is given here.

• The EH shall receive events from the main Data Flow system and send them back to it to be kept in per-
manent storage. The EH shall possibly append information to the event containing details related to the
performed selection operations. Events may be directed towards dedicated output channels according to
the results of the performed processing (specialised channels according to event classification, monitor-
ing channels, channels for events having led to error while processing, etc...)

• The EH shall distribute events to specific processing tasks according to a specific information contained
in the event header. This requirement comes as an extra functionality in addition to the specialised dis-
tribution of events to dedicated sub-farms which can be performed by the Data Flow system.

• The EH shall provide the software infrastructure to perform the required treatment inside the Processing
Tasks. Filtering is mandatory, as well as functionality for EF, monitoring purposes. Additional function-

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger 115

ality for general monitoring, calibration check, etc... should also be provided. This infrastructure shall
be compatible with the offline framework (ATHENA).

• The EH shall be scalable in the sense that increases in either the trigger rate or the event size or the re-
quired processing power for an event can be accommodated by increasing only the hardware resources.
It shall be independent of the processor architecture.

• The EH shall provide the framework to recover from hardware or software failures while minimising
the risk to loose events being processed.

• The EH shall continue to provide its functionality in case of a failure of the Supervision system.

The design of the EH has been made according to the following principles:

• data flow in the EH and data processing are provided by separated entities

• the flow of events is data driven, i.e. there is no data flow manager to assign the event to a specified tar-
get

• data copy on a given processing node is avoided as much as possible to save time and CPU resources

Data movement between the different phases of the processing chain is provided by the so
called Event filter Dataflow process (EFD), while the processing is performed in independent
Processing Tasks (PT). There is one EFD process by processing node. One or several PTs can con-
nect to EFD at different stages of the processing chain.. Event passing is made by shared memo-
ry mapped on a local file, and synchronisation is ensured by UNIX sockets. Details can be found
in [3] and [4].

9.3.2.1 Event Filter Dataflow

The processing of the events is decomposed in steps which can be configured dynamically. Eve-
ry step may provide a basic functionality: event input or output, event sorting, event duplica-
tion, internal processing (e.g. for monitoring purposes), external processing, etc...

The different stages of the processing chain are implemented by "tasks". All "tasks" are derived
from a base class Task. Possible derived classes are InputTask, OutputTask, Counter-
Task (which monitors the number of events traversing it), ForwardingTask, or EndTask.
This list is not exhaustive. Some Tasks provide an interface with the external (with respect to
EFD) PTs An example of an EFD implementation is given in Figure 1.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

116 9 High-level trigger

In this example, one has first an Input Task which makes the interface with the main Data Flow
system. Events are then counted in an Internal Monitoring Task. The External PT Task provides the
interface for synchronisation and communication with PTs in charge of performing the actual
selection. Events which have not been tagged as rejected by the PT are then duplicated. In one
of the paths, events are first counted then passed to Output Tasks to be sent to permanent stor-
age. In the other path, on which prescaling may be applied, events are made available to differ-
ent monitoring tasks according to the tag they have received during the selection in the PT.

There is no copy of data between the processing steps. Events are mapped by the InputTask in
shared memory (SharedHeap) mapped on a file. Only pointers are passed to the different
processing entities. The file mapping the shared memory segment ensures that data is saved by
the operating system in case of problem. The information produced by the external PTs can be
made available to other (monitoring) tasks if it is stored in the SharedHeap.

The tasks are daisy chained in the sense that each task knows the identity of the next task to ex-
ecute for the current event. The Task base class has a method named processEvent() receiv-
ing a reference on an event pointer and returning a pointer on the next Task to execute. The
backbone of the chaining mechanism is a Worker thread which first extracts an event from a
Work Queue. The getWork() method returns from the Work Queue a pair (Event pointer, Task

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger 117

pointer). It calls then the processEvent method of the Task passing the pointer to the Event.
After processing, the method returns the pointer on the next Task, or the NULL pointer if it was
the last task in the chain. Figure 2 shows the sequence diagram corresponding to this mecha-
nism.

9.3.2.2 Processing Task

Processing Tasks run on every processing node as independent processes. They use the offline
framework ATHENA to run the selection algorithms for the strategy described in Chapter 4.

Event passing between PT and EFD is done via the SharedHeap described in previous section.
Synchronisation makes use of UNIX sockets. After having connected to the EFD process, the PT
can request an event to the "external Task". It receives a pointer to a read-only region of
SharedHeap. When processing is completed, PT returns an answer to the "external Task" under
the form of a string. This answer is then used to decide which step will be executed then in the
processing chain (event sent to permanent storage, deleted, used for monitoring purposes,
etc...). PT can request a writeable block in SharedHeap, where it can store additional informa-
tion produced during processing. If the event is to be sent to permanent storage, EFD will ap-
pend this data to the raw event.

To enter more in the details, communication between EFD and PT is done via the standard
ATHENA service ByteStreamCnvSvc. Input is made by selecting ByteStreamEFHandler-
InputSvc (instead of ByteStreamFileInputSvc). In the main event loop, the nextEvent
method gets a pointer to an event in the SharedHeap, casts it to the standard Event format Li-
brary (EFL) FullEventFragment and passes it to ByteStreamCnvSvc. Producing EF additional
information makes use of the standard EFL to define an "EF sub-detector fragment" consisting

Worker
thread

getWork()
(event, task1)

Work
queue

task1task2taskN

processEvent(event)
task2

processEvent(event)
task3

processEvent(event)
NULL

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

118 9 High-level trigger

in the standard "ROS/ROB/ROD" fragment suite. One ROD fragment is dedicated to the EF re-
sult itself. Other ROD fragments may be defined to contain serialised EF PESA reconstructed
objects. Finally, output is made by selecting the standard ByteStreamEFHandlerOutputSvc.
The EF result is accessed in the transient event store and the answer is checked. If output is re-
quested, then it gets a pointer to the EF sub-detector fragment and it serialises it to the request-
ed SharedHeap extension. Finally, the EF result is passed back to EFD which determines the
next step of the processing chain.

9.3.3 Supervision

9.3.3.1 Design

A detailed list of requirements can be found in [5]. This list is based on the analysis of con-
straints coming from other systems and on some first and general uses cases. These require-
ments are summarised here.

Some constraints arise from the working environment:

• •the Supervision system must work in full connection with the general ATLAS TDAQ control. In par-
ticular, it must map the finite state machine of the TDAQ Run Control. It must comply with the parti-
tioning system.

• •the Supervision system must provide a user interface for the crew on shift. The interface must be as
user friendly as possible while providing the tools for expert work during both the commissioning and
steady operation phases.

The mandates of the Supervision system are:

• configure the machines

• configure the software

• provide the Run Control facilities

• provide error handling and recovery facilities, as well as some bookkeeping facilities

• monitor the EF processes

• provide the user with access to the information data produced in the PTs

• possibly provide some farm management facilities (this is still an open question), i.e. hardware monitor-
ing, operating system maintenance, code distribution on many different nodes, etc...

In addition to standard requirements on robustness and scalability, the design of the Supervi-
sion system must be flexible to cope with the evolution which will result from the better under-
standing of the system obtained by exercising it. In particular, the global ability of the EF system
to provide a functionality good enough for allowing data taking is a concept which is bound to
evolve with time when new hardware and software is used.

More details on the design and implementation of the Supervision may be found in Chapter 13.
It makes use of the toolkit provided by the Online Software (see Chapter 10). A tree-like struc-
ture has been adopted. The EF Farm is organised in sub-farms, each of them is attached to a giv-
en SFI. The Run Control hierarchy consists of a root top level controller and one child controller
per sub-farm. All ancillary duties related to process management are performed by a server lo-

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger 119

cal to each sub-farm (the so-called DSA Supervisor of the Online Software suite). A local IS serv-
er allows to exchange information with other sub-systems (Figure 3).

Scalability and performance tests have been performed on the ASGARD cluster at ETH Zurich
and on CERN-IT clusters. Results are given in [6] and [7]. They demonstrate the ability of the
system to control farms the size of which reaches 1000 processors (on quad-boards).

Note: one could have here a figure showing the response time for RC transitions as a function of
the number of controlled nodes e.g. figure 6 of [7]

9.3.4 Extra functionality possibly provided by EF

Although it is not strictly speaking part of the HLT, it is worth mentioning some functionality
which can be provided by the EF at a rather low cost in term of resource usage. The idea is to
take profit of some CPU consuming calculations which have been made for the sake of selection
(mainly reconstruction) and which can be re-used for monitoring and/or calibration/alignment
purposes. This could be done

• directly in EFD context (by-products of calculations performed for selection, in the filtering tasks or in
independent monitoring tasks). This functionality has been illustrated in Section 9.3.2.1

• or in dedicated parts of the Farm, specially fed by the main Data Flow, and working under the control of
the EF supervision

More details on monitoring in EF can be found in Chapter 7.

9.4 Event selection software

NEEDS FURTHER WORK FOR A PROPER INTRODUCTION!

The key roles of the event selection software (ESS) are ‘‘event selection’’ and ‘‘event classifica-
tion’’. Abstract objects representing candidates of e.g. electrons, jets, muons and J/ψ−>e+e- are

s

Control
host

sub-farm
root controller

sub-farm 1

sub-farm
root

controller

sub-farm
DSA

supervisor

sub-farm
IS server

sub-farm 2

sub-farm
root

controller

sub-farm
DSA

supervisor

sub-farm
IS server

sub-farm N

sub-farm
root

controller

sub-farm
DSA

supervisor

sub-farm
IS server

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

120 9 High-level trigger

reconstructed from event data by a particular set of HLT algorithms and applying a set of cut
parameters. An event is selected if the reconstructed objects satisfy at least one physics signa-
ture a given the trigger menu. At both stages, the LVL2 and the EF, events are rejected if they do
not pass any of the selection criteria designed to meet the signal efficiency and rate reduction
targets of the trigger. The boundary between LVL2 and EF is not precise from a physics event se-
lection point on view. Indeed, flexibility in setting the boundary should be retained in order to
profit from the complementary features of both trigger steps.

Figure 9-6 A component diagram of the high level trigger selection chain with the two steps of the LVL2 and EF
selection.

The basic structure of the HLT selection chain is shown in figure??? in a simplified form. The
starting point for the HLT is the LVL1 result. It contains the LVL1 trigger type and the informa-
tion about primary ROIs that caused the LVL1 accept, plus secondary ROIs not considered for
the LVL1 accept. Both types of ROIs are used to seed the LVL2 selection. The concept of seeded
reconstruction is fundamental to the LVL2, apart from the special case of B-physics.

The LVL2 result plays a similar role for the EF as does the LVL1 result for the LVL2. The LVL2
result provides the means to seed the EF selection. It should also be possible to seed the EF di-
rectly with the LVL1 result in order to study for example the LVL2 performance. The EF and the
LVL2 results will be appended to the raw event data.

A yet to be further defined component is the EF classification. It may include special selections
for calibration events and for new physics signatures, i.e. a discovery stream. The LVL2 and EF
results include those physics signatures from the trigger menu which were satisfied and higher
level reconstruction objects. The EF result can be used to assign tags to the events or even assign
them to particular output streams.

The event selection software involves both the infrastructure or framework and the selection al-
gorithms. The latter are to be provided either by the PESA group or, in case of the algorithms for
the EF, by the offline reconstruction group. Major parts of the online reconstruction will have to
be based on offline reconstruction algorithms. This is an important constraint for the design of
the Event Selection Software.

In the online the Event Selection Software will run in the software environments provided by
the LVL2 processing unit and the EF processing task, as is shown in figure???. Therefore the
event selection software needs to comply with the online requirements, like thread safety, on-
line system requirements and services, as well as online performance goals.

<<RawData>>
LVL1Result

The EF Classification
part of the Event Filter

is not yet defined.

<<RawData>>
LVL2DetailedResult

<<RawData>>
EFDetailedResult

LVL2Selection

EFSelection

EFClassification

LVL1 Result contains
information about

LVL1 Trigger Type and
about primary and secondary

Regions of Interest

<<seeded by>>

<<seeded by>>

<<produces>>

<<produces>>

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger 121

It is essential though that the event selection software is also able to run directly in the offline
environment ATHENA (ref.???) to facilitate development of algorithms, to study the boundary
between LVL2 and EF and to allow performance studies for physics analysis. Therefore the
event selection software needs to comply with the control framework and services that are pro-
vided by the offline software architecture team. For this reason the ATHENA framework was
chosen as the framework to implement the event selection software inside the EF processing
task and in the modified form of the PESA steering controller in LVL2 processing unit.

MAY ADD A SUBSECTION ON THE REUSE OF OFFLINE SOFTWARE IN THE TRIGGER,
SHOULD DEFINITELY BE BETTER WORKED INTO THE TEXT.

9.4.1 Package Dependencies in the Online System

HERE ONE HAS TO REWORK THE DIAGRAMS TO TAKE ATHENA AS A FRAMEWORK INTO
ACCOUNT. QUESTIONS ARE WHERE TO PUT THE BS CONVERSION SERVICE, STORE-
GATE ETC.... SEE WITH FRED, SAUL..

In figure??? the package diagram is shown for the event selection software running in the LVL2
processing unit. The PESA steering controller uses the interface of the event selection software
to request the LVL2 selection on the next LVL1 result. The event selection software needs to ac-
cess ROB data fragments and uses meta data in order to obtain the LVL2 decision. The ROB data
requests are sent via an interface of the ROB data collector. Services are used to access meta da-
ta. These include the geometry, conditions and B-Field map information needed for the algorith-
mic trigger processing of the event. Monitoring services serve purposes like histogramming and
messaging.

Figure 9-7 Package diagram showing the dependencies of the event selection software performing the LVL2
selection in the LVL2 processing unit. DIAGRAM NEEDS UPDATE (HLTSSW-ESS, PSC,...)

QUESTION: WE DESCRIBE THE PSC AS AN ENHANCED ‘‘VERSION’’ OF ATHENA? WHERE
DO WE BREAK UP THE LONDON SCHEME?

No external dependencies are shown in the figure. The communication with external systems
and subsystems, including the LVL2 Supervisor and the ROS, are hidden from the event selec-

<<subsystem>>
LVL2ProcessingUnit

HLTSSW

LVL2Monitoring
Service

1..*

LVL2MetaData
Service

1..*

LVL2PU
Application

ROBDataCollector

initialisation and
processing of next

LVL1 Result, returns
LVL2 Detailed Result

Histogramming
and Messaging

Trigger Configuration,
Geometry, Conditions,

B-Field Map

LVL2 Selection

1..*

interface(s) to
external

(sub)systems

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

122 9 High-level trigger

tion software by means of the PESA steering controller. The event selection software can be ini-
tialised via its interface at the start of a ‘‘RUN’’. Likewise, the PESA steering controller requests
the event selection software to process a given LVL1 result. Note that to optimize the use of
available computing resources several LVL1 results are processed in parallel in different
threads.

Figure 9-8 Package diagram showing the dependencies of the event selection performing the EF selection in
the Event Handler. DIAGRAM NEEDS UPDATE (HLTSSW-ESS, Data-Flow,...)

In figure??? the corresponding package diagram is shown for the event selection software run-
ning in the event handler. The data flow has an interface to the external subsystems for the com-
munication with the event filter IO. The data flow package transmits the event to the processing
task, which requests the EF selection for the event using the interface of the event selection soft-
ware. No equivalent of the ROB data collector is needed by the processing task, because it is car-
ried out after the event building. Again meta data and monitoring services are needed for the
algorithmic trigger processing. Again, the dependencies on external systems and subsystems
are hidden from the event selection software, including event filter IO and run control. It is fore-
seen to run a single EF selection per processing task.

In both subsystems the event selection software depends on interfaces of the meta data and
monitoring services. The use of ATHENA as a common framework allows for the same or simi-
lar interface definitions running offline or online

9.4.2 Package Dependencies in the Offline

The package diagram for the event selection software running offline in ATHENA is shown in
figure???. In the offline the task of the HLT is to emulate the full online selection chain. This re-
quires also to use the emulation of LVL1 \cite{LVL1}, which is provided by the LVL1 system.
Hence three so called top level ATHENA algorithms are needed, namely the LVL1 trigger emu-
lation and two instances of the event selection software. The LVL1 trigger emulation provides
the LVL1 result. The first instance of the event selection software is configured to execute the
LVL2 seeded by the LVL1 result, the second to execute the EF selection seeded by the LVL2 re-
sult.

<<subsystem>>
EventHandler

HLTSSW

EFMonitoring
Service

1..*

EFMetaData
Service

1..*

EventFlow

initialisation and
processing of next

event, returns
EF Detailed Result

Histogramming
and Messaging

Trigger Configuration,
Geometry, Conditions,

B-Field Map

EF Selection

interface(s) to
external

(sub)systems

ProcessingTask

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger 123

NEEDS MAJOR UPDATE! ATHENA IS THE MAIN FRAMEWORK, ROB DATA PROVIDER
AND BS CONVERSION SERVICE INSIDER HLTSSW. MORE TEXT IS NEEDED HERE!!!
WHAT IS THE OFFLINE DATA FLOW VIA BS CONVERSION SERVICES, BS FILES...

Figure 9-9 {Package diagram showing the dependencies of the event selection software running the LVL2 and
EF Selection in the offline. DIAGRAM NEEDS UPDATE! ATHENA IS THE MAIN FRAMEWORK, ROB DATA
PROVIDER AND BS CONVERSION SERVICE INSIDE HLTSSW...

9.4.3 An Overview of the Event Selection Software

NEEDS UPDATE TO ACCOUNT FOR THE USE OF ATHENA ONLINE/OFFLINE, BS SERVIC-
ES...

In figure??? the package diagram of the event selection software is shown. The sub-packages
are:

• The Steering controls the selection software. It ‘‘arranges’’ the algorithm processing for
the event analysis in the correct order, so that the required data is produced and the trig-
ger decision is obtained. The steering implements the interface to the PESA steering con-
troller (when running in the LVL2 processing unit) and to the processing task (when
running in the event handler). The same interface is used when running in the offline
framework ATHENA.

• The event data is structured following the Event Data Model (EDM). The EDM covers all
data entities in the event and their relationships with each other. The data entities span
from the raw data in byte stream format (originating from the detector RODs), the LVL1
result and all other reconstruction entities up to the LVL2 and EF result. The EDM is
therefore the ‘‘language spoken’’ by the software to communicate information about the
event.

• The HLT Algorithms are used by the steering to process the event and to obtain the data
on the basis of which the trigger decision is taken. The dependency on offline algorithms
is especially important for the implementation of the EF. Trigger versions of offline algo-
rithms are derived that are adopted to online requirements. Hence, a common definition

<<framework>>
ATHENA/Gaudi

HLTSSW

<<Service>>
Monitoring

Service

1..*

<<Service>>
MetaData
Service

1..*

<<AthenaAlgorithm>>
EventFilter
Emulation

emulate online
LVL2PU Application and

Processing Task (EF)

Histogramming
and Messaging

Trigger Configuration,
Geometry, Conditions,

B-Field Map

EF and LVL2
Selection

emulate LVL2 ROB
Data access via DC

<<Service>>
Storegate

ROBDataCollector
Emulation

<<AthenaAlgorithm>>
LVL1Trigger

Emulation

<<AthenaAlgorithm>>
LVL2Trigger

Emulation

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

124 9 High-level trigger

of the EDM for the online and offline needed in order to facilitate the reuse of Offline Al-
gorithms.

• The Data Manager handles all event data, including the raw data access, during the trig-
ger processing. It therefore provides the necessary infrastructure for the EDM. For the
case of LVL2 the communication with the ROB data collector to access the ROB data frag-
ments is part of the data manager.

In summary, the EDM covers all event data entities and is used by the other parts of the event
selection software, by the Steering, the HLT algorithms and the data manager, to communicate
information about the event. The HLT algorithms build up the event tree in the process of the
reconstruction. The result is analysed by the steering to obtain the trigger decision. The data
manager has to provide an important functionality, as it supports the EDM. It provides the
means of accessing the event data and for building it up. The data access patterns reflect the
needs of the HLT algorithms and of the steering. Here, raw data access for example by ‘‘region’’
is clearly a requirement. In the following sections more detail is given on the event selection
software sub-packages.

Figure 9-10 A package diagram of the event selection software, showing the dependencies of the sub-pack-
ages. The external packages are named following the online case and include their respective offline emula-
tions. The dependencies on the offline event data model and on the offline algorithms are explained in the text.
DIAGRAM NEEDS UPDATE, EMULATIONS, DATA MANAGER, PROCESSING TASK-ATHENA EVENT LOOP
MANAGER, LV2PU-PSC...

9.4.4 The Event Data Model Sub-package

... UNIFY WITH SECTION 13, TALK WITH STEVE AND VALERIO... INTRODUCED RECON-
STRUCTION INPUT OBJECTS.

HLTSSW

Steering Monitoring
Service

1..*

MetaData
Service

1..*
ROBDataCollector

(emulation of)

imporant external
dependency,
especially for
Event Fliter

DataManager HLTAlgorithms

ProcessingTask
(emulation of)

EventDataModel

LVL2PU
Application

(emulation of)

<<import>>

OfflineEvent
DataModel

OfflineAlgorithms

<<import>>

ROSData
Preparation

(emulation of)

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger 125

Figure 9-11 EDM package diagrams showing the Raw Data, Raw Data Objects, Features and Trigger Related
Data sub-packages. In all cases the stereotypes in the class names are used to indicate the package they
belong to. NEEDS UPDATE FOR RecInputObjects

The HLT is a two stage software trigger that selects events by means of reconstruction. It is
guided by the ROI information provided by the LVL1 system. All event data classes and their
relations are summarised in the EDM. The EDM of the event selection software is closely cou-
pled to the offline EDM, especially because offline algorithms are the basis of the EF selection.
The EDM is therefore being developed in close contact with the offline EDM, detector and re-
construction groups. The EDM classes are grouped into 5 sub-packages:

• Raw Data coming from the ROS and the LVL1 system is in byte stream format. The LVL1
result, the LVL2 and EF results, as well as ROB data from the sub-detectors and from the
LVL1 system are raw data. Part of the raw data formats are headers and trailer from the
RODs, ROBs, ROSs and DC system. Note that for a given sub-detector several raw data
formats might be used, e.g. different formats for depending on the LVL1 trigger type. This
includes different the data content or the compression schemes.

• The Raw Data Objects are an object representation of the raw data from the different sub-
detectors. In the offline the raw data objects (e.g. SCT raw objects) are created at input to
the reconstruction chain. The object creation poses an overhead, especially for LVL2.
Therefore in the current design the RDOs are only used in the EF. The LVL2 converts the
raw data directly to low level features, i.e., calorimeter cells or clusters. As it is the case for
the raw data, raw data objects are highly sub-detector dependent information.

• Features are all type of reconstruction data derived from the raw data objects or from oth-
er features with increasing levels of abstraction. This includes all offline reconstruction
EDM classes. They range from data produced after calibration and clustering up to recon-
structed quantities such as tracks, vertices, electrons or jets.

• MC Truth information. Together with the first three sub-packages of the EDM, the MC
truth is common to both the event selection software and the offline reconstruction. It is
needed primarily for debugging and performance studies.

RawData

<<RawData>>
LVL1Result

<<RawData>>
ROBData

<<RawData>>
EFDetailed

Result

<<RawData>>
LVL2Detailed

Result

RawDataObjects

<<RawDataObject>>
SCT

RawObject

<<RawDataObject>>
TRT

RawObject

<<RawDataObject>>
Pixel

RawObject

...
placeholder for
further classes

stereotypes to show
EDM subpackage

name

TriggerRelatedData

<<TriRelData>>
TriggerElement

<<TriRelData>>
ROIObject

<<TriRelData>>
Signature

Features

<<Feature>>
CaloCell

<<Feature>>
Cluster

<<Feature>>
Vertex

<<Feature>>
Particle

<<Feature>>
Track

<<Feature>>
ParticleID

<<Feature>>
CaloCluster

<<Feature>>
ClusterOnTrack

...

<<TriRelData>>
LVL1(LVL2/EF)

TriggerType

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

126 9 High-level trigger

• Another part of the EDM is Trigger Related Data. It comprises ROI objects and the
LVL1(LVL2/EF) trigger type (???ref{LVL1Result}), as well as so called trigger elements
(TEs) and signatures. A TE labels a set of reconstructed features and implies (by its label)
a physical interpretation of these features, such as a particle, missing energy or a jet. It
represents thus an even higher level of abstraction. TEs are the objects used by the steer-
ing to guide the processing and to extract the trigger decision.

A package diagram for raw data, raw data object, features and trigger related data is given in
figure???. The stereotypes in the class names are used to indicate the package name. This con-
vention will also be used in following diagrams.

MORE EDM IMPLEMENTATION DETAILS ON THE FEATURES/RDOs ARE TO BE PROVID-
ED BY SECTION 13 TOGETHER WITH DESCRIPTION OF THE BS CONVERTER AND THE AL-
GORITHM IMPLEMENTATION.

9.4.4.1 Object Relations and Event Structures

During the trigger processing the event is built up. Each event contains instances of EDM class-
es. An important aspect of the EDM are the relations between the different data classes. Naviga-
bility of such relation is essential for the algorithm processing, because navigation is used to
analyse and built upon the previously reconstructed event fragments. Role names of the class
relations are used to indicate the nature of the association.

Figure 9-12 Examples of relations between instances of EDM classes, which will be typical for an event proc-
essed by LVL2.

In figure??? typical examples of instances of EDM classes and their relations are given for an
event processed by LVL2. Figure???.a shows a TE that has a ‘‘uses’’ relation to a LVL1 ROI. An-
other TE, this one having a uses relation to a whole tree of reconstructed features, is ‘‘seeded
by’’ the first one. In figure???.b an example for a ‘‘mutually exclusive’’ relation between TEs is
shown. Finally in???.c a valid signature uses two TEs. The full event tree is constructed during
the LVL2 or EF trigger processing out of fragments like the ones displayed here. The analysis of

<<TriRelData>>
EM:TriggerElement

uses

seeded by

<<TriRelData>>
EMCluster:TriggerElement

<<TriRelData>>
LVL1EM:ROIObject

<<Feature>>
:CaloCluster

uses <<Feature>>
:CaloCell

uses

<<TriRelData>>
EMClusterA:TriggerElement

<<TriRelData>>
EMClusterB:TriggerElement

<<TriRelData>>
Hgg:Signature

uses

uses

<<TriRelData>>
Photon:TriggerElement

mutually
exclusive

<<TriRelData>>
Electron:TriggerElement

<<TriRelData>>
EMCluster:TriggerElement

seeded by

<<TriRelData>>
EM:TriggerElement

seeded by

seeded by

)

)

)

1..*

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger 127

this tree provides means for seeding the trigger reconstruction and to derive the trigger deci-
sion.

9.4.5 The HLT Algorithms Sub-package

... UNIFY WITH SECTION 13, TALK WITH STEVE AND VALERIA...ADD REFERENCE TO
CHAPTER 13, GET LANGUAGE UNIFIED..

The EDM is tightly coupled to the HLT algorithm processing. The EDM definition helps to sup-
port a modular algorithm design. Compared to the offline situation, where this statement also
holds, it is even more important for the event selection software, because the trigger selection is
data driven

Figure 9-13 A package diagram of the HLT algorithm sub-package. DIAGRAM NEEDS TO BE UPDATED.
DATA PREPARATION SHOULD BE STRUCTURED INTO CONVERTERS...LVL2.

Figure??? shows three HLT Algorithm sub-packages. They provide a rough structuring of the
trigger reconstruction. Again, stereotypes are used in the figure to indicate the corresponding
sub-package. The three sub-packages are:

• Data Conversion comprises algorithmic code for raw data conversion into objects that
are input to reconstruction. The task of this type of tools involves sub-detector specific in-
formation. Hence, sub-detector groups are responsible for the implementation and main-
tenance of the code, taking the HLT requirements into account. Data conversion ends
with ‘‘low level’’ features, which are input to the second category of HLT algorithms.

In the current design the organisation of the data conversion is different for the LVL2 and
the EF. The EF follows closely the offline reconstruction chain that starts from raw data
objects. Hence the raw data gets first converted into object form and is then processed in
order to obtain clusters or calorimeter cells. In the LVL2 the step of object creation is omit-

HLTAlgorithms

Algorithm
Tools

Feature
Extraction

<<AlgorithmTool>>
TrackFitter

...

Data
Conversion

<<DataConversion>>
DataPreparation

Algorithms

<<DataConversion>>
DataUnpacking

Algorithms

<<DataConversion>>
DataReduction

Algorithms

<<FeatureExtraction>>
Reconstruction

Algorithms

<<FeatureExtraction>>
Hypothesis
Algorithms

stereotypes to show
HLT Algorithms

subpackage name

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

128 9 High-level trigger

ted in order to avoid the overhead. Here the data preparation is going in one step from
raw data to ‘‘low level’’ features.

UPDATE USING THE NAMES AFTER CHANGING THE FIGURE.

The boundary between Data Conversion and Feature Extraction is not exact, but note that
only Data Conversion will see the Raw Data or Raw Data Objects.

• Feature Extraction algorithms operate on abstract features and trigger related data to re-
fine the event information. They built upon the data conversion output and extract the
necessary input data to derive the trigger decision. Two types of algorithms are distin-
guished in the feature extraction sub-package. Reconstruction Algorithms process fea-
tures and produce new types of features, just like offline reconstruction algorithms.
Trigger specific is the use of the information in ROI objects to restrict the processing to ge-
ometrical regions of the detector, which were identified by the LVL1 system. The TEs
used by the steering to ‘‘seed’’ the reconstruction algorithms represent these trigger rele-
vant aspects of the event. The seeding mechanism is discussed in the next subsection. The
second type of algorithms are Hypothesis Algorithms. Their task is similar to particle
identification. A hypothesis algorithm validates the physics interpretation implied by the
label of the TE based on the reconstructed features. An example is the validation of an
‘‘electron’’ using a reconstructed calorimeter cluster and a track.

• It is beneficial to structure the algorithm processing in such a way that algorithms from a
library of Algorithm Tools carry out common tasks such as track fitting or vertex finding.

There is an important difference between the offline and the HLT reconstruction, especially for
LVL2. The ROI based approach implies a data driven event reconstruction. In contrast for the
offline, any HLT algorithm in a reconstruction sequence may be executed several times per
event, once for each ROI. Therefore a modular structure of the offline algorithms is necessary.

Certain types of data manipulation are only possible at a later stage in the reconstruction, even
though they are in principle part of the detector specific processing. These operations violate in
a certain sense the three category structure given above. An example is the transformation of 1
or 2 dimensional objects, such as TRT drift circles or silicon clusters, into the ATLAS global
frame by means of alignment and conditions constants from the Conditions Service. This is pos-
sible only at the time of track fitting, because the exact position can be deduced only on the ba-
sis of external predictions that use the track itself. Operations with this characteristics should be
identified and standard methods developed to separate those detector specific operations from
the feature extraction algorithms.

9.4.5.1 The Seeding Mechanism

The HLT algorithms are the building blocks of the reconstruction that provides the data to de-
rive the trigger decision. Logically the trigger processing is done starting from a LVL1 ROI us-
ing predefined sequences of algorithms. A so called ‘‘seeding’’ mechanism is needed in order to
guide the reconstruction to the event fragments relevant for preparing the trigger decision.

It is beneficial not to couple directly the steering of the trigger selection to the details of the fea-
ture extraction algorithms. No ‘‘micro’’ sequencing should be done on the level of features, e.g.
single calorimeter cells or silicon clusters. These complex event details are better handled by the
algorithms themselves. Therefore TE are to be used to characterise with their label the abstract
physics objects, e.g. ‘‘electrons’’ or ‘‘jets’’. Besides this label a TE does not have any properties or
states of its own, because the list of possible states or properties is not well defined a priory. In-

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger 129

stead it is the ‘‘uses’’ relation by which the TE is associated to the concrete event data, that
should provide all necessary information to the algorithms.

Figure 9-14 Three diagrams showing fragments of the event fragment associated to one ROI at different stages
of trigger processing. See text for details.

Figure??? three diagrams are shown of the event fragment associated to one ROI at different
stages of trigger processing. The evolution of the fragment from step to step illustrates how the
seeding mechanism works. The upper part???.a shows an example of an electro-magnetic ROI
Object from the LVL1 calorimeter trigger. The ROI object is ‘‘used’’ by an ‘‘EM’’ TE to label it for
the HLT trigger processing. Starting from this input TE it is he task of the first HLT reconstruc-
tion step to validate the physics hypothesis of having an electromagnetic cluster above a certain
threshold. For this hypothesis an output TE is created with the corresponding label by the steer-
ing. The output TE is linked to the input TE by an ‘‘seeded by’’ relation. The steering then exe-
cutes the HLT algorithm, giving it the output TE as an argument. It is the task of the HLT
algorithm to validate this output TE.

A sequence diagram for the cluster finding algorithm is shown in figure???. The algorithm gets
as a seed the output TE that provides the means to direct the pattern recognition to the region of
interest. The first thing the algorithm needs to do is to obtain information about the geometrical
position of the LVL1 ROI. It can do so by navigating via the ‘‘seeded by’’ and ‘‘uses’’ relation
from the output Te to the input TE to the ‘‘LVL1EM’’ ROI object. The algorithm obtains η and φ
from the ROI and does its pattern recognition work. In our example it creates a calorimeter clus-
ter from a set of calorimeter cell objects. These objects are linked the output TE to record the
new event information associated with this ROI for later processing. Based on the reconstructed
cluster the algorithm decides it all cuts are passed to validate the hypothesis. The algorithm
needs to transmit the result to the steering, which is done by ‘‘activating’’ the output TE in case
of a positive decision. The steering will thus ignore all in-active TEs for further processing. The
event fragment at the end of the algorithm execution is shown in figure???.b

<<TriRelData>>
EM:TriggerElement

uses <<TriRelData>>
LVL1EM:ROIObjecta)

b)

c)

<<TriRelData>>
EM:TriggerElement

uses

seeded by

<<TriRelData>>
EMCluster:TriggerElement

<<TriRelData>>
LVL1EM:ROIObject

<<Feature>>
:CaloCluster

uses <<Feature>>
:CaloCell

uses

<<TriRelData>>
EM:TriggerElement

uses

seeded by

<<TriRelData>>
EMCluster:TriggerElement

<<TriRelData>>
LVL1EM:ROIObject

<<Feature>>
:CaloCluster

uses <<Feature>>
:CaloCell

uses

seeded by

<<TriRelData>>
electron:TriggerElement

<<Feature>>
:Track

uses <<Feature>>
:Cluster

uses

1..*

1..*

1..*

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

130 9 High-level trigger

Figure 9-15 Sequence diagram for the cluster finding feature extraction algorithm seeded by an ‘‘EM’’ TE. DIA-
GRAM NEEDS UPDATE FOR THE NEW SCHEME OF ACTIVATION OF THE OUTPUT TE, HENCE NAVI-
GATE BACK TO INPUT TE AND ROI, GET ETA/PHI, RECONSTRUCTION, SAVE CLUSTER AND TRACKS,
ACTIVATE TE IF CUT PASSED. - MONIKAS PLOT

The next algorithm in the example is a electron track finding algorithm. It is seeded with a new
output TE with the label ‘‘electron’’. The algorithm is able to navigate the full tree of data ob-
jects, as shown in figure???.b, to access the necessary information. To validate the ‘‘electron’’
physics hypothesis it could use the precise position of the calorimeter cluster to reconstruct the
track from a set of SCT clusters. Because a track is found the ‘‘electron’’ hypothesis is validated
and a TE get activated. The resulting event fragment is shown in figure???.c.

Figure 9-16 A diagram showing a fragment of the event for the case of LVL2 B-Physics trigger reconstruction.
See text for details.

<<Fe.Extr>>
CLusterFinder
:HLTAlgorithm

:Data
Manager

process
(EM:TE)

retrieveByRelation(EM,"uses") : ROIObject

<<Feature>>
clus:

CaloCluster

<<TrigRelDa>>
LVL1EM

:ROIObject

get() : GeomRegion

<<create>>

<<TrigRelDa>>
EMCluster:

Trig.Element
<<create>>

setRelation(EMCluster,"seededBy",EM)

setRelation(EMCluster,"uses",clus)

retrieveByRegion(:GeomRegion) : collection<CaloCell>

store(clus)

store(EMCluster)

setRelation(clus,"uses",:collection<CaloCell>)

<<TriRelData>>
Muon6:TriggerElement

uses

seeded by

<<TriRelData>>
Muon6Val:TriggerElement

<<TriRelData>>
LVL1Muon6:ROIObject

<<Feature>>
Muon:Track

uses <<Feature>>
:Cluster

uses

seeded by

<<TriRelData>>
InDetScan:TriggerElement

uses <<Feature>>
:Track

seeded by

<<TriRelData>>
BtoPiPi:TriggerElement

<<Feature>>
:BMeson

uses

1..*

1..*

uses
2

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger 131

In figure??? a similar diagram to???.c is shown for the case of a LVL2 B-physics trigger. Here,
the new aspect is the inner detector full scan. This means reconstructing all tracks in the event
after the initial validation of a ‘‘muon’’. A TE ‘‘uses’’ the collection of tracks and seeds, for ex-
ample, a algorithm that reconstructs an exclusive B-decay into two pions. The result of this
would be a TE called ‘‘B to PiPi’’. This TE uses a B-meson and is ‘‘seeded by’’ the ‘‘Inner Detec-
tor Scan’’ TE, as shown in the figure.

9.4.6 The Steering Sub-package

... GIANLUCA TO UPDATE THE SECTION TO GET IT IN LINE FOR THE ACTUAL IMPLE-
MENTATION, SOME EDITING IS DONE ALREADY...

The Steering controls the HLT selection. It ‘‘arranges’’ the HLT algorithm processing for the
event analysis in the correct order, so that the required data is produced and the trigger decision
is obtained. The steering controller is the component of the Steering that provides the interface
to the PESA steering controller for running in the LVL2 processing unit and to the processing
task for running in the event handler. In the offline the steering is the top level algorithm exe-
cuted directly by the ATHENA event loop manager.

The LVL2 and the EF selection is data driven, in that it builds on the result of the preceding trig-
ger level. It is the task of the steering to guide the HLT algorithm processing to the physics rele-
vant aspects of the event, using the seeding mechanism discussed in the previous section. Seen
from the side of the steering, the reconstruction of an event in the trigger is a process of refining
TEs, as was shown in figures ??? and???. For each TE at input several HLT algorithms were exe-
cuted that validated output TEs.

The goal of the HLT selection is to trigger the interesting physics events. The selection demands
that the event matches at least one so-called physics ‘‘signature’’. Each signature is a combina-
tion of abstract physical objects like ‘‘electrons’’, ‘‘muons’’, ‘‘jets’’ or ‘‘missing energy’’. It is usu-
ally requested that, for example, an electron has a minimal energy and is isolated from a jet.
Translated into the event selection software a signature is nothing else but a combination of re-
quired TEs in an event. A possible syntax for writing a Signature of requested TEs is using the
label ‘‘2 x e20i’’, which would mean two ‘‘20 GeV isolated electrons’’. In table??? and??? the fi-
nal LVL2 and EF trigger menu is shown for the case of??? luminosity. These menus contain a
complete list of such ‘‘signatures’’.

As shown in the tables, the Signatures used to select the event can be quite explicit, like 4 Jets or
a Z −> ee. For each signature requiring more than one TE it is beneficial not to completely vali-
date the first, because the second may be e.g. due to noise and therefore may fail right away at
the beginning of reconstruction. The HLT algorithm processing is therefore done in steps. At
each step a part of the reconstruction chain of HLT algorithms is carried out for each TE, if pos-
sible, starting with the HLT algorithm giving the biggest rejection. At the end of each step a de-
cision should be taken, whether the event can still possibly satisfy one of the final physics
signatures.

9.4.6.1 The Trigger Configuration

... THOMAS TO UPDATE FOR THE RECURSIVE HLT TRIGGER CONFIGURATION BASED
ON XML FILES...

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

132 9 High-level trigger

Figure 9-17 A class diagram for the trigger configuration, showing for each step a pair of sequence table and
menu table.

Figure??? shows the class diagram for the Trigger Configuration}. It contains a Sequence Table
and a Menu Table for each of the trigger steps described above. Both of these are discussed be-
low.

The sequence table consists of a collection of Sequences, where a Sequence is defined as a trans-
formation of one or more TEs, via a set of HLT algorithms, into a new TE. The steering obtains
information about the specific HLT algorithm to execute for a given seed from the sequence.
Each HLT algorithm in a sequence is configured with the relevant parameter set.

The menu table contains the collection of Signatures that could be validated in a given step.
Each signature usually contains collections of required TEs and of TEs required in veto, a pres-
caling factor, and a forced accept rate. Some exceptions to this do occur; for example random
triggers do not specify a list of requested TEs, only a forced accept rate.

It is important to provide a consistent trigger configuration at all trigger levels (LVL1, LVL2,
EF). As sequences provide input and output information in terms of TEs, it is possible to derive
from the final EF menu table the trigger configuration for all trigger levels. The complete list of
possible sequences is sufficient to calculate the sequence and menu tables for all earlier steps. In
the current implementation the recursive generation of a consistent trigger configuration is
done for the EF and LVL2 based on XML sequence and menu tables. In the future the LVL1 con-
figuration will be derived from the set of input TEs for the first LVL2 step.

9.4.6.2 An Overview of the Steering

... GIANLUCA TO UPDATE THE SECTION, THE NAMES AND CONVENTIONS ACCORDING
TO THE CURRENT IMPLEMENTATION. THE DESCRIPTION OF THE INTERFACE NEEDS
CORRECTION...

1..*

TriggerConfiguration

std::pair

T1,T2

MenuTableSequenceTable

1..*

<<TriRelData>>
Signature

-m_Prescale : float
-m_ForcedRate : float

<<TriRelData>>
TriggerElement

-m_label : string
0..*

1..*

Sequence

1..*

<<FeatureExtraction>>
HLTAlgorithm 1

-m_ParameterSet

1..*

one per
step

seeds

output
0..*

required

required
in veto

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger 133

Figure 9-18 A class diagram for the Steering, including the interface to wards the LVL2PU and the Processing
Task. DIAGRAM NEEDS UPDATE, GIANLUCA TO FOLLOW UP.

In figure??? a class diagram for the steering of the event selection software is given. Its interface
to the PESA steering controller and the processing task provides the necessary methods to con-
figure the event selection software at the beginning of a ‘‘RUN’’, to execute the LVL2 or EF se-
lection, and to end a ‘‘RUN’’. The interface is implemented by the Steering Controller.

The task of the Trigger Configurator is to provide the trigger configuration. This task is carried
out during the initialisation phase of the trigger system (before the start of a ‘‘RUN’’), which is
especially important for LVL2.

In the LVL2 the steering controller uses the LVL1 Conversion to convert the LVL1 result (i.e.
Raw Data) into ROI objects and prepares the selection by creating the TEs needed for the seed-
ing mechanism. In case of the EF the corresponding LVL2 Conversion translates the LVL2 result
to prepare the EF selection. The trigger processing in steps is then carried out by the Step Han-
dler. It uses the Sequencer to execute the HLT algorithm in the sequences. The step handler ex-
ecutes the Step Decision to compare the result of the algorithmic processing, given in terms of
TEs, with the signatures to decide whether or not to reject the event. The next step is processed
by the step handler only if the event is still accepted, until all steps are executed. The role of the
Event Summary is to produce the LVL2 or EF results, depending on where the event selection
software is running.

The steering controller uses the Run Summary at the end of a ‘‘RUN’’ to collect summary infor-
mation for monitoring purposes.

9.4.6.3 Configuration of the event selection software

... THOMAS TO UPDATE THIS SUBSECTION...

collect
SummaryInfo

SteeringController

<<interface>>
ISteering

+configure(ConfigID)
+process(LVL1Result) : LVL2DetailedResult
+process(Event) : EFDetailedResult
+endRun()

Selection
Configurator

Trigger
Configuration

StepHandler

Sequencer

StepDecision

EventSummary

execute step
processing

LVL1Conversion
converts

input

produce
DetailedResult

execute
algorithms

produce
decision

getsConfig

produce

LVL2Conversion
converts

input

RunSummary

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

134 9 High-level trigger

In figure??? a sequence diagram is shown for the selection configuration. Its task is to provide a
trigger configuration, which is then used by the step handler to carry out the trigger selection.
The input to the selection configuration are XML menu and sequence tables. Using this infor-
mation the EF and LVL2 trigger configuration is created recursively.

PUT THIS AT THE RIGHT PLACE: The sequences in the sequence tables contain HLT algo-
rithms. They need to be created and configured using a parameter set that is part of the configu-
ration data. It is part of the HLT algorithm initialisation to access meta data via dedicated
services. For LVL2 it is essential that also the access to meta data is limited to this phase.

Figure 9-19 A sequence diagram for the Selection Configurator that provides the Trigger Configuration. THO-
MAS TO UPDATE THIS DIAGRAM.

9.4.6.4 The LVL1 Conversion

... GIANLUCA TO UPDATE THE SECTION...

:Selection
Configurator

:Trigger
ConfigService

:TrigConf

getConfig
(:ConfigID)

:Steering
Controller

<<Fea.Extr>>
algo:HLT
Algorithm

<<create>>

retrieve(:ConfigID) : ConfigurationData

<<TrigRelData>>
:Trigger

Configuration

putInSequences(algo)

<<create>>

configure(:ParameterSet)

:MetaData
Service

retrieve(:MetaData)

:Data
Manager

configure(:ConfigID)

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger 135

Figure 9-20 A sequence diagram for the LVL1 conversion. GIANLUCA TO UPDATE THE DIAGRAM

In figure??? a sequence diagram is shown for the LVL1 conversion. It is used by the steering
when running in LVL2. In order to prepare the LVL2 selection the LVL1 result
\cite{LVL1Result} is converted into the LVL1 trigger type and into ROI objects. Finally, a TE is
create for each ROI Object ‘‘using’’ it, as has been discussed in figure???.a. The LVL1 Conversion
provides this list of TEs to the steering as the starting point for the step processing.

The LVL1 conversion has to know the configuration of the LVL1 system to translate the raw da-
ta. Therefore the LVL1 conversion is to be developed in close contact with the LVL1 system. In
case of running the EF selection it is the task of the corresponding LVL2 conversion to decode
the LVL2 result to enable LVL2 seeding of the EF.

9.4.6.5 The Step Processing

MONIKA AND GIANLUCA TO UPDATE THIS SECTION.

:LVL1
Conversion

<<TrigRelData>>
roi:ROIObject

:Data
Manager

<<create>>

:list<TE>

process
(:LVL1Result)

:Steering
Controller

setRelation(LVL1TE,"uses",roi)

<<TrigRelData>>
LVL1TE:

TriggerElement<<create>>

store(LVL1TE)

store(roi)

<<TrigRelData>>
type:LVL1

TriggerType<<create>>

store(type)

process
(:LVL1Result)

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

136 9 High-level trigger

Figure 9-21 A sequence diagram for the step processing showing the role of the step handler, of the sequencer
and of the step decision. UPDATE DIAGRAM FOR THE TE ACTIVATION SCHEME -MONIKA.

In figure??? a sequence diagram is shown for the step handler carrying out the step processing
for an event. The step handler gets as arguments the trigger configuration and the initial list of
TEs produced by the LVL1 (LVL2) conversion. Each step corresponds to a pair of a menu table
and a sequence table. The reconstruction part for each step is controlled by the sequencer. It ex-
ecutes HLT algorithms in sequences to further process the event and to refine the content in
terms of TEs. The step decision decides based on the outcome of each reconstruction step
whether or not to reject the event.

Depending on the input list of TEs at the beginning of each step the sequencer executes HLT al-
gorithms in sequences, which are defined in the sequence table. The task is to ‘‘seed’’ the HLT
algorithms in the sequences executed for all (one at a time) matching combinations of TEs out of
the original list of input TEs and to request validation of the resulting output TEs. The resulting
list of TEs is passed to the step decision after all sequences in the sequence table of this step
have been processed. The step decision then compares the list of output TEs to the signatures in
the menu table for this step. For each matching combination of TEs a signature is stored in the
data manager. The signature ‘‘uses’’ these TEs in order to prepare the LVL2 (EF) result. The step
decision returns a list of TEs, which have been used to satisfy at least one signature. The remain-
ing TEs are discarded from further processing. The step handler continues processing the next
step either until it is rejected by the step decision, because no signature is satisfied, or until all
steps are done, in which case the event is accepted.

9.4.6.6 Obtaining the LVL2 and EF Results

... GIANLUCA TO CHANGE THE SUBSECTION, SAY SOMETHING ON THE LVL2 RESULT
TRANSFER TO PSC...

:StepHandler

process
(:SeqTab,

input:list<TE>)

:Step
Sequencer

<<Fe.Extr.>>
:HLTAlgorithm

<<TrigRelData>>
output:

TriggerElement

:Data
Manager

process(seeds:list<TE>)
<<create>>

:StepDecision

store(output)

[not empty] used:list<TE>

setRelation(satisfied,"uses",uses:list<TE>)

process(:MenuTab,results)

<<TrigRelData>>
satisfied:
Signature<<create>>

store(satisfied)

setRelation(output,"seededBy",
seeds)

<<loop :Seq’s>>

<<loop :Sign’s>>

<<loop :Algo’s>>

results:list<TE>

process
(:TrigConf,
:list<TE>)

[valid] output

:Steering
Controller

decision
:bool

<<loop :pair<SeqTab,MenuTab> >>

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger 137

Figure 9-22 A sequence diagram for the Event Summary executed at the end of the processing of each
accepted event. GIANLUCA TO FIX THIS DIAGRAM

The event summary is executed after the step handler for each accepted event. Its task is to pro-
duce the LVL2 or respectively the EF result based on the event information produced. As shown
in figure???, the event summary retrieves the list of validated signatures from the data manager.
From this the LVL2 (EF) trigger type is determined. The exact content of the LVL2 or EF results,
which is to be constructed from the event information, is not yet defined.

At the end of the event analysis the data manager has to clean the event data from its memory.

... CRISTOBAL MAY PUT SOMETHING ABOUT THE NEW MONITORING STUFF HERE...

9.4.6.7 Ending a Run of the Event Selection Software

NEEDS UPDATE!!!

:Event
Summary

:Data
Manager

:res

getDetailed
Result()

:Steering
Controller

<<TrigRelData>>
:LVL2

TriggerType<<create>>

retrieve() : list<Signatures>

<<TrigRelData>>
res:LVL2

DetailedResult

<<retrieve relevant Event Data>>

<<create>>

clearEvent()

definition of
"relevant data"

is an open issue

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

138 9 High-level trigger

Figure 9-23 A sequence diagram for the Run Summary, which is executed at the end of a ‘‘RUN’’. CRISTOBAL
MAY UPDATE THE DIAGRAM

The final component of the steering sub-package is the run summary. Its task is to collect the
summary information from the HLT algorithms, which are in the sequences of the sequence ta-
bles in the trigger configuration. This summary information is published via the monitoring
services.

GIANLUCA, PLEASE CORRECT AND PUT THIS SOMEWHERE...

The run summary also destructs the instances of the HLT algorithms. Afterwards, the steering
controller destructs the old trigger configuration.

9.4.7 The Data Manager Sub-package

THIS SECTION NEEDS MAJOR REWORK AS THE NATURE OF THE DATA MANAGER HAS
CHANGE WITH THE USE OF ATHENA/STOREGATE. THE LONDON SCHEME AND THE
BYTE STREAM CONVERSION SERVICE NEEDS TO BE INTRODUCED AS WELL AS THE RE-
GION SELECTOR.

:Run
Summary

process
(:TrigConfig)

:Steering
Controller

<<Fea.Extr>>
algo:HLT
Algorithm

<<TrigRelData>>
:Trigger

Configuration

getSeqeunces()

collectRunSummary()

:Monitoring
Service

publish(:SummaryInfo)

<<destruct>>

<<destruct>>

<<loop :Sequence Tables>>

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger 139

Figure 9-24 The class diagram for the data manager sub-package. See text for details. THIS NEEDS MAJOR
REWORK!!! REGION SELECTION, ROB MAPPER GOES, STOREGATE,...

The Data Manager provides the means of receiving and storing the event data during the trig-
ger processing. It therefore provides the necessary infrastructure for the EDM and for the navi-
gation used for the seeding mechanism. In case of LVL2, the data manager does the
communication with the ROB data provider. It thereby hides the online aspects the ROB data
access from the HLT algorithm processing, which is essential for the PESA algorithm develop-
ment model, which is based on the reuse of offline software.

DISCUSS THE PRINCIPLES OF THE LONDON SCHEME HERE.

- OFFLINE INTERFACES

- OFFLINE TO ROB MAPPING

- ROB DATA PROVIDER

- LAZY DATA PREPARATION

REGION SELECTION NEEDS TO BE INTRODUCED HERE.

The access to (prepared) data by a geometrical region is a clear requirement for most of the HLT
algorithms that follows directly from the ROI concept. The Region Selection implements this
detector geometry dependent data access pattern centrally. It can then be used easily by all HLT
algorithms.

THE INTERFACE TO THE DATA IS A BIT MORE COMPLEX AS IT IS RDO/RIO LEVEL DETEC-
TOR CONTAINERS. THE DESCRIPTION OF THE INTERFACE IS STILL WRONG IN THE FOL-
LOWING.

<<interface>>
IDataManager

+store(<T>)
+setIdentifiers(<T>,list<ID>)
+setRelation(<T1>,Name,<T2>)
+retrieve() : collection<T>
+retrieveByIdentifier(list<ID>) : collection<T>
+retrieveByRelation(<T1>,Name) : collection<T2>
+retrieveByRegion(GeomRegion) : collection<T>
+clearEvent()
+configure(ConfigID)
+endRun()

DataManager

RegionSelector

ROBDataProvider

ROBMapper

DataPreparation

ContainerWithInfrastructure

+store(<T>)
+setIdentifiers(<T>,list<ID>)
+setRelation(<T1>,Name,<T2>)
+retrieve() : collection<T>
+retrieveByIdentifier(list<ID>) : collection<T>
+retrieveByRelation(<T1>,Name) : collection<T2>
+clearEvent()

translate to
ROBID

translate to
DetID

prepares
data

sends
data requests

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

140 9 High-level trigger

In figure??? a class diagram for the data manager sub-package is shown. The Data Manager In-
terface is implemented by the data manager. It is used by the HLT algorithms and by the steer-
ing. In order to provide the necessary functionality the data manager uses several other
components:

• The Store Gate is part of the ATHENA framework that provides both, the functionality of
a transient store and the infrastructure to implement the raw data access via it persistency
mechanism.

• WRITE SOMETHING ABOUT THE KEY2KEY NAVIGATION - ANDREW?

• The Region Selector is used to implement the ‘‘retrieve By Region’’ data access pattern.
Their task is to translate the abstract geometry region into a set of (offline) Identifiers for
Identifiable Collections. Those are used to access the data.

• WRITE SOMETHING ABOUT THE RDO,RIO and CONTAINERS THAT HOLD THE
DATA - HONG?

• The Byte Stream Conversion Service is...

EXPLAIN ITS FUNCTION

• The Data Preparation Tools are used by the byte stream conversion service to process
raw data and to create in the case of the EF the raw data objects or to create in the case of
the LVL2 the reconstruction input objects. It hides the detector dependent part of the raw
data processing from the HLT algorithm.

The region selector and the byte stream conversion service needs to be configured at the begin-
ning of a ‘‘RUN’’ to access meta data and to set up the data conversion tools used for the data
preparation. The same limitations as for the steering and HLT algorithms apply to the meta data
access by the data manager, especially for LVL2.

9.4.7.1 Storegate as the Transient Event Store

THIS NEEDS MAJOR REWRITE, IT IS THE OLD TEXT FOR THE CWI BEFORE WE DECIDED
TO TAKE STOREGATE.

Storegate as the transient event store of ATHENA is used in the data manager for the function
of the container with infrastructure.

STOREGATE:

-DATALINKS

-PERSISTENCY

-ONLINE TO OFFLINE MAPPING

-OWNERSHIP AND CLEANUP

9.4.7.2 The Support for Navigation

ANDREW - ADD SOMETHING ON THE KEY2KEY MECHANISM.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger 141

9.4.7.3 The Raw Data Access using the London Scheme

SECTION TO BE WRITTEN UP.

9.4.7.4 Retrieve by Region

STEVE AND ALINE TO REWORK THIS SECTION

Figure 9-25 Sequence diagrams for the data requests by a geometrical region. The difference between the
requests is in the kind of output data. See text for details. DROP PART A) FROM THE DIAGRAM AND FIX UP
PART B.

The data request by a Geometrical Region is an important requirement to implement the ROI
concept in the event selection software. A geometrical region does not directly correspond to a
ROI, but is a more general concept. A ROI defines a given volume in the detector of interest for
the trigger processing, as was shown in figure???. But during the HLT algorithm processing
more refined information becomes available that can be used to restrict the original volume and
thereby the amount of data to be analysed. On the other hand, a geometrical region could be a
full sub-detector or a group of sub-detectors, like for example for the full scan of the inner detec-
tor for certain B-physics triggers. Another application of the data request by geometrical region

Data Model Core SW Data Model Core SWHLT DC InterfaceOffline Core SWHLT Algorithms HLT PESA Core SW

HLT
Algorithm

Region
Selector StoreGate IDC ByteStream

Converter

ROB
Data

Collector

Data
Preparation

get(Region):
list<Identifier>

get(T, key):
IDC

get(list<Identifier>):
col<RIO>

get(CLID, key):
col<RIOr>

get(IOA):
col<RIOr>

get(ROBID):
list<ROBData>

get(ROBData):
col<RIO>

SRA 2003

:DataManager :ROBMapper

retrieveByRegion
(region:GeomRegion)

: coll<ROBData>

getROBList(region)
: list<ROBID>

ROB request
by Region

retrieveByIdentifier
(list<ROBID>)

:coll<ROBData>

:coll<ROBData>

:DataManager :Region
Selector

retrieveByRegion
(region:GeomRegion)

: coll<T>

getDetList(region)
: list<DetID>

retrieveByIdentifier
(list<DetID>)

:coll<T>

:coll<T>

b))

<T> are either
Raw Data Objects

or low level Features

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

142 9 High-level trigger

is for example the ‘‘Track Following’’ done by XKALMAN or IPATREC. Here those clusters are
to be examined that are on the next detector surface intersected by the track candidate.

In figure??? a sequence diagram is shown...

STEVE - PLEASE ADD TEXT ACCORDING TO THE NEW DIAGRAM.

Note that the ‘‘retrieve By Region’’ access pattern effectively hides the details of the detector ge-
ometry model and of the Identifiers from the requesting HLT algorithms. This pattern does not
apply to higher levels of reconstructed objects, i.e. tracks or TEs. Here the access to these objects
is by their relation to other objects (seeding mechanism) in the event.

9.4.7.5 Identifiable Containers and the Reconstruction Input Data

WE NEED TO WRITE HERE SOME DETAILS ABOUT THE CONTAINERS AND THE DATA.

It also supports access to data by Detector Identifier for raw data objects or low level features,
e.g. calorimeter cells or clusters in the SCT. A Detector Identifier corresponds, for example, to a
wafer for the Pixels \cite{IDEDMReq}.

9.4.7.6 Data Request by Detector Identifiers

Figure 9-26 A sequence diagram for the data request by detector identifier. See figure??? for details of the data
preparation. UPDATE FIGURE FOR THE LONDON SCHEME IMPLEMENTATION. HENCE, IDC, BYTE-
STREAM-ADDRESS/PROXY, PERSISTENCY.

THIS TEXT NEEDS REWORKING FOR THE LONDON SCHEME.

In figure??? the corresponding sequence diagram is shown for the data request by detector
identifier. Again, the data manager checks, if the data for a given detector identifier is available
in the Storegate. If not, the data preparation is used to prepare the requested output, because ei-
ther raw data objects or low level features are requested. Again, the data is then stored in Store-
gate to allow for caching before returning it.

9.4.7.7 ROB Data Request and Lazy Data Preparation

UPDATE THIS TEXT FOR THE LONDON SCHEME.

:DataManager
:Container

With
Infrastructure

retrieveByIdentifier
(:list<DetID>)

: coll<T>

[not retrieved]
prepareData(:DetID) : coll<T>

:coll<T>

:Data
Preparation

<<loop : DetID >>

retrieveByIdentifier
(:DetID) : coll<T>

[not retrieved]
store(:coll<T>)

[not retrieved]
setIdentifier

(:coll<T>,:DetID)

caching

<T> are either
Raw Data Objects

or low level Features

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

9 High-level trigger 143

In figure??? a sequence diagram is shown for the data preparation. It prepares raw data objects
or low level Features if they are not already stored in Storegate, as was shown in figure???. This
way the important performance requirement of so called ‘‘lazy data preparation’’ is implement-
ed, because only the requested part of the data is actually processed, when it is needed by the
HLT algorithm.

Figure 9-27 A sequence diagram for the data preparation that executes the data conversion algorithms inside
the data manager. REWORK - ROB DATA ACCESS AND BYTE STREAM CONVERTER.

THIS TEXT BELOW IS WRONG, NEEDS UPDATE.

As shown in the figure, the data preparation uses the ROB mapper to translate the detector
identifier into a ROB Identifier. Then the ROB Data is requested from the Data Manager itself.
This request was discussed in figure???. The Data Preparation uses a Data Conversion Algo-
rithm to create the requested output data from the part of the ROB Data that corresponds to a
given Detector Identifier. It is an option, that only a part of the full ROB Data fragment gets
transmitted from the ROS.

9.4.8 Further Issues

THIS IS A PLACEHOLDER FOR MORE STUFF TO COME. THE FOLLOWING STUFF NEEDS
PROPER WRITE-UP FOR THE NEXT DRAFT:

• WRITE SOMETHING ON THE ISSUES OF BUNDLED ROB REQUESTS.

• An issue that needs to be addressed by the detailed design and implementation are HLT
algorithm error conditions. They are to be handled by the sequencer and by the data
preparation.

• The LVL2 supervisor or the PESA steering controller may timeout events that are being
processed in the LVL2. In such a case the LVL2 result might not be send to the ROS and
might therefore not be available at input to the EF. Another possibility is that the event se-
lection software sends only a partial result because of an error condition. In both situa-
tions the EF might be forced to revert back to the LVL1 result to seed the selection, which
needs to be taken into account in the detailed design of the EF selection strategy.

:DataManager:ROBMapper

prepareData(:DetID)
: coll<T>

retrieveByIdentifier(:ROBID)
: ROBData

:coll<T>

:Data
Preparation

translate(:DetID)
: ROBID

process(:ROBData,:DetID) : coll<T>

lazy
unpacking

<T> are either
Raw Data Objects

or low level Features

<<DataConv>>
:HLTAlgorithm

may request and
cach ROB Data

:coll<T><<create>>

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

144 9 High-level trigger

• The meta data services are needed to provided the necessary information for the event se-
lection software. An important issue here is the lifetime of the information. In the LVL2
all meta data accesses are to be done before the start of the ‘‘RUN’’, while for the EF up-
dates per time period may be possible.

• The monitoring has several aspects, the debug output of the HLT algorithms, the timing,
the rate monitoring, etc.. Monitoring services are used by the event selection software to
publish the information.

• It is desirable to allow for a graphical event display in order to visualise the trigger recon-
struction and decision making process. This could be done on the basis of the event infor-
mation transmitted via the LVL2 and EF results that may include all reconstructed
Features for debugging purposes.

• For the online system a graphical user interface will be useful for both the control and the
monitoring of the event selection software.

9.5 References

9-1 LVL2 URD
[1] F. Touchard et al., HLT operational analysis and requirements to other sub-systems, http://edms.cern.ch/...
[2] C. Bee et al., Event Handler Requirements, http://edms.cern.ch/...
[3] C. Meessen et al., Event Handler Functional Design Analysis, http://atlasinfo.cern.ch/Atlas/GROUPS/
DAQTRIG/EF/EFD-FunctionalAnalysis.pdf
[4] C. Bee et al., Event Handler Design, http://edms.cern.ch/...
[5] C. Bee et al., Supervision requirements, http://edms.cern.ch/...
[6] C. Bee et al., ATLAS Event Filter: Test Results for the Supervision Scalability at ETH Zurich, November
2001, http://documents.cern.ch/cgi-bin/setlink?base=atlnot&categ=Note&id=daq-2002-006
[7] S. Wheeler et al., Test results for the EF Supervision, https://edms.cern.ch/document/374118/1

9-2

9-3 EF DataFlow URD

9-4 EF Supervision URD

9-5 ESS Requirements Doc

9-6 ESS Design Doc

9-7 Guidelines for writing thread-safe LVL2 algorithms

9-8 Athena

9-9 Gaudi

9-10 PSC

9-11 April prototype

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

10 Online Software 145

10 Online Software

10.1 Introduction

The Online Software encompasses the software to configure, control and monitor the TDAQ
system but excludes the management, processing and transportation of physics data. It is a cus-
tomizable framework which provides essentially the "glue" that holds the various sub-systems
together. It does not contain any elements that are detector specific as it is used by all the vari-
ous configurations of the TDAQ and detector instrumentation. It co-operates with the other
sub-systems and interfaces to the Detector Readout Crates, the Detector Control System (DCS),
the Level 1 Trigger, the Data-flow, the High Level Trigger processor farms, the Offline Software
and to the human user as illustrated in Figure 10-1.

An important task of the Online Software is to provide services to marshal the TDAQ through
its start-up and shutdown procedures so that they are performed in an orderly manner. It is re-
sponsible for the synchronisation of the states of a run in the entire TDAQ system and for proc-
ess supervision. These procedures are aimed to take a minimum amount of time to execute to
reduce the overhead since this affects the total amount of data that can be taken during a data-
taking period. Verification and diagnostic facilities help for early and efficient problem finding.
Configuration database services are provided for holding the large number of parameters
which describe the system topology, hardware and software components and running modes,
based on the partitioning model. During data taking, access to monitoring information like sta-
tistics data, sampled data fragments to be analysed by monitoring tasks, histograms produced
in the TDAQ system, and also to the errors and diagnostic messages sent by different applica-
tions is provided. User interfaces display the status and performance of the TDAQ system and

Figure 10-1 The Online Software in relation to the TDAQ system

LVL1 Trigger

Detector Control
System

ATLAS TDAQ

Data-flow

High Level
Trigger

Offline Software

Detector

O
n
l
i
n
e
S
W

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

146 10 Online Software

allow the user to configure and control his operation. These interfaces provide comprehensive
views of the various sub-systems at different levels of abstraction.

The Online software has various types of users. The TDAQ Operator runs the TDAQ system in
the control room during a data-taking period, the TDAQ Expert has system-internal knowledge
and can perform major changes to the configuration, the Sub-system or Detector Expert is respon-
sible for the operation of a particular sub-system or detector and TDAQ and detector software ap-
plications use services provided by the Online software via application interfaces.

remark: the following definitions will be available from the TDAQ glossary to which only a reference will
be made.

The following types of Online Software users have been identified:

1. TDAQ Operator - this user is responsible for using the TDAQ system to take data during a partic-
ular data taking session, for example during a shift. He has to be able to start, monitor and stop
data taking. He is not expected to perform any programming tasks related to the Online Software.

2. TDAQ Expert - this user is responsible for running and maintaining the TDAQ system itself. He
is responsible for the initialisation and shutdown of the TDAQ system or parts of it. He shall have
a knowledge of the TDAQ structure and its components.

3. TDAQ Sub-System or Detector Expert - this user is responsible for the operation of a particular
sub-system of the TDAQ or particular sub-detector of the ATLAS detector. He should be capable of
describing the specific TDAQ sub-system or detector configuration and diagnosing the specific
sub-system or detector problems which may appear during operation.

4. TDAQ Sub-System or Detector - this user represents a software produced by the TDAQ Sub-Sys-
tem or Detector developers. This software will use the services provided by the Online Software for
the sub-systems and detectors configuration and control.

The user requirements to the Online Software are collected and described in the corresponding
document [10-1].

10.2 The Architectural Model

The Online Software architecture is based on a component model and consists of three high-lev-
el components, called packages. Details on the architecture and a comprehensive set of use cas-
es are described in [10-2]. Each of the packages is associated with a functionality group of the
Online software. For each package a set of services which it has to provide is defined. The serv-
ices are clearly separated one from another and have well defined boundaries. For each service
a low-level component, called sub-package, is identified.

Each package is responsible for a clearly defined functional aspect of the whole system.

1. Control - contains sub-packages for the control of the TDAQ system and detectors. Con-
trol sub-packages exist to support TDAQ system initialisation and shutdown, to provide
control command distribution, synchronisation, error handling and system verification.

2. Databases - contains sub-packages for configuration of the TDAQ system and detectors.
Configuration sub-packages exist to support system configuration description and access
to it, record operational information during a run and access to this information. There
are also boundary classes to provide read/write access to the conditions storage.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

10 Online Software 147

3. Information Sharing - contains classes to support information sharing of the TDAQ sys-
tem and detectors. Information Sharing classes exist to report error messages, to publish
states and statistics, to distribute histograms built by the sub-systems of the TDAQ sys-
tem and detectors and to distribute events sampled from different parts of the experi-
ment’s data flow chain.

The Internal Interaction between the Online Software Packages is shown in Figure 10-2. The
Control makes use of the Information Sharing and of the Databases packages. The Databases
package is used to describe the system to be controlled. This includes in particular the configu-
ration of TDAQ Partitions, TDAQ Segments and TDAQ Resources. The Information Sharing
package provides the infrastructure to obtain and publish information on the status of the con-
trolled system, to report and receive error messages and to publish results for interaction with
the operator.

Figure 10-2 Internal Interaction between the Online Software Packages

The following sections describe these packages in more details.

10.3 Control

The main task of the control package is to provide the necessary tools to perform the TDAQ sys-
tem operation as they are described in Chapter 3. It provides the functionality of the TDAQ
Control as shown in the controls view of the Chapter 5.

In addition the package has the responsibility for functionalities necessary in the computing en-
vironment for user interaction, process management and access control.

10.3.1 Control Functionality

Control encompasses software components responsible for the control and supervision of other
TDAQ systems and the detectors. The functionalities have been derived from the user require-
ments and are described in turn.

• User Interaction: Interaction with the human user like the operator or system expert of
the TDAQ system

• Initialization and shutdown: Initialisation of TDAQ hardware and software components
is foreseen. The operational status of system components must be verified and the initial-
isation of these components in the required sequence is ensured. Similar considerations
are required for the shutdown of the system.

Databases Control

Get Object

Get/Publish Information

Report/Receive
Error

Select
Configuration

Information

Subscribe to Data Changes

 Sharing

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

148 10 Online Software

• Run control: System commands have to be distributed to a range of several hundred to
thousand of clients programs. The control sub-package is responsible for the command
distribution and the required synchronisation between the TDAQ sub-systems and detec-
tors.

• Error handling: Malfunctions can interrupt system operations or deteriorate the quality
of physics data. It is the task of the control sub-package to identify such malfunctions. If
required the system will then autonomously perform recover operations and assist the
operator with diagnostic information.

• Verification of System status: The control package is responsible to verify the functional-
ity of TDAQ configuration or any subset of it.

• Process Management: Process management functionality in a distributed environment is
provided.

• Resource Management: Management of shared hardware and software resources in the
system is provided.

• Access Management: The control package provides a general Online software safety
service, responsible for TDAQ user authentication and the implementation of an access
policy for preventing non-authorised users to corrupt TDAQ functionality.

10.3.2 Performance and Scalability Requirements on Control

The TDAQ system is a large and heterogeneous system composed out of a large number of
items to be controlled. These items range from read-out modules in VME crates to workstations
within HLT computer farms. Typically these items are clustered such that modules are con-
tained within crates or workstations are part of sub-farms. Such units are the preferred places
to interface with the Online Software Control system. The number of these units is estimated to
be in the range of 500 to 2000. To control these units the TDAQ control system is build in a
hierarchical and distributed manner. More detailed explanation can be found in the chapter on
Experiment Control, Chapter 12.3.1, "Online Software Control Concepts".

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

10 Online Software 149

10.3.3 Control Architecture

The Control package is divided into a number of sub-packages as shown in Figure 10-3.

Figure 10-3 The Organization of the control package

The functionality described in Section 10.3.1 has been distributed to several distinct sub-pack-
ages:

• The User Interface (UI) for interaction with the operator

• The Supervision for the control of the data-taking session including initialization and
shutdown, and for error handling

• The Verification for analysis of the system status

• The Process Management for the handling of processes in the distributed computing en-
vironment

• The Resource Management for coordination of the access to shared resources

• The Access Management for providing authentication and authorisation when necessary

10.3.3.1 User Interface

The User Interface (UI) provides an integrated view of the TDAQ system to the operator and
should be the main interaction point. It is foreseen to provide a flexible and extensible UI that
can accommodate panels implemented by the detectors or TDAQ systems. Web based
technologies will be used to give access to the system for off site users.

10.3.3.2 Supervision

The Supervision sub-package realizes the essential functionality of the Control package. The
generic element is the so-called controller. A system will generally contain a number of
controllers organized in a hierarchical tree, one controller being in control of a number of others
in the system while being controlled itself via its higher level controller. One top level controller

Control

Operator

UI

SupervisionVerification

Access
Mgmt

Process
Mgmt

Resource
Mgmt

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

150 10 Online Software

called root controller will take the function of the overall control and coordination of the system.
by interfacing to other TDAQ system or detector specific controllers. Via the User Interface sub-
package it provides all TDAQ control facilities to the Operator. These are expressed as interfaces
in Figure 10-4 and discussed below in more details.

The Initialisation and Shutdown is responsible for

• initialization of TDAQ hardware and software components, bringing TDAQ partition
to the state when it can accept Run commands.

• re initialization of a part of the TDAQ partition when necessary

• shutting the TDAQ partition down gracefully

• TDAQ process supervision

The Run Control is responsible for

• controlling the Run by accepting commands from the user and sending commands to
TDAQ sub-systems

• analysing the status of controlled sub-systems and presenting the status of the whole
TDAQ to the Operator

The Error Handling is concerned with

• analysing run-time error messages coming from TDAQ sub-systems

• diagnosing problems, proposing recovery actions to the operator or performing
automatic recovery if requested

Most of the above defined functionality can reside on the local controller and are extended by
specific policies which the TDAQ sub-systems and detector expert developers implement.

10.3.3.3 Verification

The Verification sub-package is responsible for the verification of the functionality of the
TDAQ system or any subset of it. It uses developer’s knowledge to organize tests in sequences,
analyse test results, diagnose problems and provide a conclusion about the functional state of
TDAQ components

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

10 Online Software 151

Figure 10-4 Interfaces of the Supervision and Verification sub-packages

A TDAQ sub-system developer implements and describes tests which are used to verify any
SW or HW component in a configuration. This includes also complex test scenario, where the
component functionality is verified by the simultaneous execution of processes on several
hosts. The sub-system uses the Process Management sub-package for the execution of tests.

The Verification sub-package is used by the Supervision to verify the state of the TDAQ
components during initialization or recovery operations. It can also be used directly by the
Operator via UI, as it is shown on Figure 10-4.

10.3.3.4 Process, Access and Resource Management systems

The Verification and Supervision sub-packages connect via interfaces to other Control sub-
packages, as shown in Figure 10-5.

Figure 10-5 Interfaces of the Process management, resource Management and the Access Management

Test

Local Controller

Initialisation/Shutdown

Run Control

 sub-system

Operator (via UI)
Verify Functionality

TDAQ Expert

Policy/Knowledge

Supervision

Verification

Error Handling

Start/Stop

Lock/Unlock

Authenticate

Authorize

Monitor
Process

Mgmt

Resource
Mgmt

Access
Mgmt

Verification

Supervision

UI

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

152 10 Online Software

The Process Management provides basic process management functionality in a distributed
environment. This functionality includes starting, stopping and monitoring processes on
different TDAQ hosts.

The Resource Management is concerned with the allocation of software and hardware
resources between running partitions. It prevents the operator from performing operations on
resources which are allocated to other users.

The Access Management is a general Online software safety service, responsible for TDAQ user
authentication and implementation of an access policy, in order to disable non-authorised
persons to corrupt eventually TDAQ functionality.

10.3.4 Prototype Evaluation

Prototype evaluations have been performed for a number of technologies. The initial choice
was based on experiences in previous experiments. Products were chosen, that fit well in the
envisaged object oriented software environment.

• A Run Control implementation is based on a State Machine model and uses the State ma-
chine compiler CHSM as underlying technology.

• A Supervisor is mainly concerned with process management. It has been build using the
Open Source expert system CLIPS.

• A verification system, DVS, performs tests and provides diagnosis. It is equally based on
CLIPS.

• A Java based graphical User Interface, IGUI is in use.

• Process Management and Resource Management are implemented based on components
which are part of the current implementation of the Online Software packages.

10.3.4.1 Scalability and Performance Tests

A series of large scale performance tests has been performed to investigate the behaviour of the
prototype on systems of the size of the final TDAQ system. In several iterations the behaviour
of the system was studied and limits were identified, the prototype was refined and tested until
the successful operations of a system with a size in required range was reached. Up to 1000
controllers and their applications could be controlled reliably while meeting the performance
requirements.

One item of interest is the synchronized distribution of commands within the system.
A command is send by the root controllers and propagates through the controller tree to the
leaf controllers. These leaf controllers interface from the overall Online control system to the
specific tasks to be performed in the TDAQ system. The time was measured to distribute a
command from the top level and to obtain the confirmation from all controllers. Figure 10-6
presents the time taken to perform three state transition in turn for a three level control hierar-
chy for configurations containing 10 to 1000 leaf controllers. A single transition takes about 2
seconds for 1000 controllers, a time well within expectations. In a real world system each con-
troller would perform its specific actions during such a transition. This would need a time be-
tween a few seconds up to tens of seconds. In relation to these values the overhead of the
overall control system will be small.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

10 Online Software 153

Figure 10-6 Time taken to perform three state transitions for configurations containing 10 to 1000 leaf control-
lers.

Figure 10-7 Boot transition in a three level control hierarchy for configurations containing 10 to 1000 leaf con-
trollers. To initialize a system with thousand controllers currently 30 seconds are needed.

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200

Lu
ke

 W
ar

m
 S

ta
rt

 T
im

e
(s

)

Partition Size (ctrls)

Plot of Luke Warm Start Time versus partition size

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200

B
oo

t T
im

e
(s

)

Partition Size (ctrls)

Plot of Boot Time versus partition size

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

154 10 Online Software

A second item of interest is the process control in the distributed system. To switch between
various configurations, it will be necessary to start and stop many processes on many nodes.
While such an operation is not performed during physics data-taking, it will be of importance
during development and calibration. Figure 10-7 shows the time needed by the prototype im-
plementation to initialize a system with thousand controllers. Detailed descriptions and further
test results can be found in [10-3].

10.3.4.2 Technology Considerations

During the evaluation of the prototype several shortcomings of the current system have been
identified. An important aspect is the lack of flexibility in the state machine implementation
CHSM. Another aspect is the multitude of applied technologies. It is envisaged that the final
supervision system will be based on a single technology. In this context the expert system
CLIPS and related products have been studied. Due to the general purpose nature of this prod-
uct various aspects of the supervision like initialization, control and error handling can well be
implemented. The knowledge base provides the basis for customizable solutions, that can be
specialized for different parts of the system. Another advantage is the extensibility of CLIPS. It
can easily be interfaced with other components of the Online Software system. Alternative
products in this category are Jess, a similar expert system implementation written in Java and a
commercial alternative, Eclise by Haley. Inc.

Alternatives have been investigated, for example solutions based on scripting languages. The
use of SMI++, a scripting language for the description of interaction state machines, which is
used by several HEP experiments, has been studied, as well as a possible implementation based
on the scripting language Python. While each of these approaches has its particular merits, the
evaluation showed that the CLIPS based solution is better suited for our environment and is the
favoured implementation choice.

10.4 Databases

The TDAQ systems and detectors require several persistent services to access description of the
configuration used for the data taking as well as to store the conditions under which the data
were taken. The online software provides common solutions for such services taking into ac-
count requirements coming from the TDAQ systems and detectors.

10.4.1 Functionality of the Databases

There are three main persistent services proposed by the online software:

• the configuration databases to provide the description of the system configurations,

• the online bookkeeper to log operational information and annotation,

• the conditions databases interface to store and read conditions under which data were taken.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

10 Online Software 155

10.4.1.1 Configuration Databases

The configuration databases are used to provide overall description of the TDAQ systems and
detectors hardware and software. It includes description of partitions defined for the system
and parameterized for different types of runs describing the hardware and software used by a
given partition and their parameters.

The configuration databases are organized in accordance with the actual hierarchy of the TDAQ
system and detectors. The configuration databases give a possibility for each TDAQ system and
detector to define their own format of the data (i.e. the database schema), to define the data
themselves and to share the schema and the data with others. The configuration databases pro-
vide graphical user interfaces to browse the data by any human user and to modify the data by
authorized human experts. The configuration databases give possibility to generate data access
libraries which hide the technology used for the databases implementation and can be used by
any TDAQ or detector application to read the configuration description or to be notified in case
of it’s changes. An application started by the authorized expert can use the data access libraries
to generate or to modify the data.

The configuration databases provide efficient mechanism for fast access to the data for huge
number of clients during data taking. They do not store the history of the data changes but pro-
vide archiving options. Configuration data which are important for offline analysis must be
stored in the conditions databases.

10.4.1.2 Online Bookkeeper

The online bookkeeper is the system responsible for the online storage of relevant operational
information and configuration description provided by the TDAQ systems and detectors. The
OBK organizes the stored data on a per-run basis and provides querying facilities.

The online bookkeeper provides graphical user interfaces to allow human users to browse con-
tents of the recorded information or append such information. The append access is limited for
authorized users only. Similarly, the online bookkeeper provides application programming in-
terfaces for user applications to browse the information or to append annotations.

10.4.1.3 Conditions Databases Interfaces

The TDAQ systems and detectors use the conditions databases to store conditions which are
important for the offline reconstruction and analysis. The conditions data are varying with time
and physical parameters such as temperature, pressure and voltage. These conditions are stored
with a validity range (typically time or run number) and retrieved using time or run number as
a key.

The conditions databases are implemented and supported by the offline software group. The
online software group provides application programming interfaces for all TDAQ systems and
detector applications and mechanisms to insure required performance during data taking runs.

10.4.2 Performance and Scalability Requirements on the Databases

The performance and scalability requirements to the database services are strongly depend on
the strategies chosen by the TDAQ systems and detectors to get the data to their applications, to

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

156 10 Online Software

store the conditions and to keep the operational data. Roughly, for most of TDAQ systems and
detectors, the number of clients of configuration and conditions database can be equal to the
number of local controllers, which varies by different estimations from 500 to 2000. For EF the
situation is not defined yet and the number of database clients in the worse scenario can be
O(103), if each processing task will get configuration description and conditions itself.

The databases information can be split on several not crossed domains specific for the TDAQ
systems and detectors. The complete description is required only to few applications, while the
most others require to access only a small fraction of it. The typical database size which com-
pletely describe all necessary parameters of TDAQ system or detector for a physics run is about
O(102) MBytes. The DCS may produce up to 1 GBytes of measured conditions per day.

The databases data are read once during starting of the data taking and an acceptable time to
get description for whole system is an order of few minutes. During the data taking of physics
data the databases may slightly be changed and an acceptable time to get the changes by regis-
tered applications is several seconds. The data can be considerably changed during special cali-
bration runs and the maximum rate requested in this case is 10 Mbytes produced in one hour.

10.4.3 Architecture of Databases

10.4.3.1 Configuration databases

The configuration databases (ConfDB) provide user and application programming interfaces.

Via user interface the software developer defines the data object model (i.e. the database sche-
ma) describing required configurations. The expert uses the interface to manage databases, to
put the system description and to define configurations, which can be browsed by a user.

A TDAQ or detector application access databases via data access libraries (DAL). A DAL is gen-
erated by the software developer for a part of the defined object model relevant to his sub-sys-
tem. The DAL is used by any process required to get the configuration description or to receive
a notification in case of it’s changes. Also, the DAL is used by an expert process needed to pro-
duce the configuration data.

The ConfDB system contains the following classes:

• ConfDB Repository - defines low-level interfaces to manipulate the configuration data-
bases including databases management by users which are granted enough privileges,
schema and data definitions and notification subscription on data changes; it defines in-
terfaces above a DBMS used for implementation and hides any specific details, so any
other ConfDB classes shall never use DBMS-specific methods directly;

• ConfDB UI (User Interface) - defines user interface for object model definition, configura-
tions definition, database browsing and population by human actors;

• ConfDB DAL Generator - defines interface to produce DAL;

• ConfDB DAL - defines interfaces for configurations selection, reading/writing configu-
ration objects and subscription for notifications on data changes by the user and expert
processes (to receive notification a process shall realize ConfDB Data Monitor interface).

The Figure 10-1 shows interfaces provided by the configuration databases and their users.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

10 Online Software 157

10.4.3.2 Online bookkeeper

The OBK provides several interfaces to its services, being that some of them are human orient-
ed, while others are APIs to allow interfacing with client applications. The access to these inter-
faces depends on the user’s (human or system actor) privileges.

The OBK uses as persistency backbone the Conditions and Time-Varying offline databases serv-
ices. In this sense, it counts on those services to provide the necessary means to store and re-
trieve coherently data that changes in time and of which there may exist several versions (e.g.
configurations). In Figure 10-2 it is possible to observe the logical subdivision of the OBK sys-
tem into abstract classes. Of these, the main ones are:

• OBK Repository - defines the basic methods to allow the storing, modifying and reading
of online log data, as well as the methods to set the OBK acquisition mode and also to re-
quest log data from the several TDAQ processes providing them. It allows a human or
system actor to start or stop the acquisition of log data. In order to become a log data pro-
vider a TDAQ application will have to realize the OBK Log Information Provider inter-
face. This interface allows a TDAQ application to accept subscriptions for log information
from the OBK, as well as for the OBK to access log information in a TDAQ application;

• OBK Browser - this is the class responsible for providing the necessary querying func-
tionality for the OBK database. Since the data browsing and data annotation functions are
tightly coupled, the class also includes functionality to add annotations to the database;

• OBK Administrator - the OBK Administrator class provides to the users which are grant-
ed enough privileges the functionality to alter (delete, move, rename) parts or all of the
OBK database. These users also given the possibility of changing the OBK acquisition
mode (e.g. data sources, filters for the data sources).

Apart from the main classes depicted in Figure 10-2, OBK’s architecture also includes four other
classes (not shown in the diagram for reasons of clarity): OBK UI Browser and OBK Browser
API both inherit from the OBK Browser class and define the human client oriented and the ap-

Figure 10-8 Configuration databases users and interfaces

ConfDB

User Process

Notify Data

Repository
ConfDB

DAL

<<interface>>
ConfDB Data

Monitor

Changes

Subscribe Data
Changes

Notify Objects
Changes

Subscribe Objects
Changes

Select
Configuration

Get Object

Put Object

Expert Process

ConfDB
UI

Get/Put
Data

Get Schema

Put Schema

ConfDB DAL
Generator

<<produces>>
Define

Object ModelSW Developer

Make DAL

User
Expert

Define
Configuration

Browse

Put Object

Manage
DBs

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

158 10 Online Software

plication client oriented versions of that class; the same thing happens for the OBK UI Admin-
istrator and the OBK Administrator API classes which defines the human client and
application client oriented versions on the OBK Administrator class.

10.4.3.3 Conditions database interface

The user requirements to the ATLAS offline conditions and time-varying databases and their ar-
chitecture are not specified at the moment of the document writing. The conditions database in-
terface will add functionality required by TDAQ and detectors users, if it will not be provided
by the offline.

10.4.4 Application of databases to the TDAQ sub-systems

Usage of the databases by the other TDAQ systems, concentrating on differences with general
use.

Should be provided by TDAQ systems

10.4.5 Prototype evaluation

The main required functionalities of the ConfDB and the OBK have been implemented and
evaluated in the prototype of the Online System. The main goals were to have a prototype to be
used during test beams and integration with other TDAQ systems and detectors, and to proof
the possibility to use chosen technologies for the final system.

10.4.5.1 Configuration Databases

The prototype of the configuration databases is implemented on top of the OKS persistent in-
memory object manager. It allows to store the database schema and data in multiple XML files

Figure 10-9 OBK users and interfaces

OBK
Browser

User

User Process

OBK
Repository

OfflineDB
Library

OBK
Administrator

Expert

Expert Process

TDAQ Process

Define acquisition mode
and administrate log data

Browse and annotate
log data

Start/Stop

Subscribe

Notify

Browse

Administrate

Set acquisition mode

Annotate

<<interface>>
OBK Log Info

Provider

Get Info

<<import>>

acquisition

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

10 Online Software 159

which subset can be combined to get a complete description. The access to the configuration de-
scription can be made via file system (C++ interface) and via dedicated remote database server
built on top of ILU (freeware CORBA implementation) and tested for C++ and Java interfaces.

The Figure 10-10 presents results obtained during online software performance and scalability
tests [REF]. The possibilities to read a realistic configuration via AFS file system and from re-
mote database server were tested for maximum available amount of nodes.:

The tests with direct access of the configuration via common AFS file system had shown good
scalability and performance and such approach can be used if a common file system will be
available. The results of access via remote database server can indicate the number of the serv-
ers which need to be started depending on number of clients, requests synchronisation, amount
of data they read and time requirements.

The proposed architecture of the configuration databases allows to switch between implemen-
tation technologies without affecting user code. Some other database technologies are studied
for possible replacement of the one used in the prototype including relational databases
(MySQL and ORACLE) with possible object extensions and POOL LCG project.

10.4.5.2 Online Bookkeeper

The prototype of the online bookkeeper was implemented on OKS persistent in-memory object
manager and MySQL freeware implementation of relational database management system. The
results obtained during recent performance and scalability tests [REF] have shown, that the cur-
rent MySQL implementation allows to reach 20 KBytes per second rate when storing monitor-
ing data (100 bytes per data item) produced by up to 100 providers.

10.5 Information Sharing

The choice of name for this section is not final. A possible alternative could be “Monitoring services”.
This would then be applied to the whole of the document where one talks about these services.

There are several areas where information sharing is necessary in the TDAQ system: synchroni-
sation between processes, error reporting, operational monitoring, physics event monitoring,
etc. The Online Software provides a number of services which can be used to share information
between TDAQ software applications. This chapter will describe the architecture and prototype
implementation of these services.

Figure 10-10 The results of the configuration databases performance and scalability tests

Number of clients (one per node)

Time (sec)

Reading 3 MBytes of data
via AFS file system

10 40 70 160100 130 190 220
0

10

20

30

40

50
Updated

Cached

Number of clients (one per node)

Time (min:sec)

Connect with database server
and read portion of objects

10 40 70 160100 130 190 220
0:00

1:00

2:00

3:00

4:00
4 MB

200 KB

Number of clients (1..6 per node)

Time (sec)

Connect with database server
and read one object (2 KB)

200 400 600 1200800 1000
0

1

2

3

4

5 Synchronous
Distributed
within 1”

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

160 10 Online Software

10.5.1 Functionality of the Information Sharing Services

Any TDAQ software application may produce information which is of interest for the other
TDAQ applications. The first application will be called in this chapter Information Provider, the
later ones will be called Information Consumers, which indicates that they are users of the in-
formation. Any TDAQ software application may be Information Provider and Information
Consumer at the same time. The main responsibility of the Information Sharing services is:

• transportation of the information from the Information Providers to the Information Con-
sumers

• delivery of information requests from the Information Consumers to the Information Pro-
viders.

Figure 10-11 shows main interactions which providers and consumers may have with the Infor-
mation Sharing services.

10.5.2 Performance and scalability requirements on Information Sharing

It is expected that the TDAQ system will contain about O(103) processes. Each of those process-
es can produce information of different types. Therefore each Information Sharing service shall
be able to serve O(103) Information Producers simultaneously.

The number of Information Consumers for any single information item is expected to be about
O(1) processes. Therefore each Information Sharing service shall be able to serve O(1) Informa-
tion Consumers of each information item simultaneously.

The time to transport a single information object from the Information Provider to all the inter-
ested Information Receivers shall be about O(1) milliseconds.

10.5.3 Architecture of Information Sharing Services

The Online Software provides four services to handle different types of shared information.
Each service offers the most appropriate and efficient functionality for a given information type
and provides specific interfaces for both Information Providers and Consumers. Figure 10-12
shows the existing services.

The Inter Process Communication (IPC) is a basic communication service which is common for
all the other Online Software services. It defines high-level API for the distributed object imple-
mentation and for remote object location. Any distributed object in the Online Software services

Figure 10-11 Information Sharing in the TDAQ system

Information
Consumer

Information
Provider

Information
data

command

data

command

Sharing
Services

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

10 Online Software 161

has common basic methods which are implemented in the IPC. In addition the IPC implements
partitioning, allowing to run several instances of the Online Software services in different
TDAQ Partitions concurrently and fully independently.

10.5.3.1 Information Service

The Information Service (IS) allows software applications to exchange user-defined informa-
tion. Figure 10-13 shows interfaces provided by the IS.

Any Information Provider can make his own information publicly available via the Publish in-
terface. Then there are two possibilities. The Information Provider, which does not implement
the InfoProvider interface, has to inform the IS about all the changes of the information via the
Update interface. The Information Provider, which implements the InfoProvider interface, up-
dates the information only when it is explicitly requested by the IS via the Send Command in-
terface.

There are also two types of Information Consumers. One can access the information by request
via the Get Info interface. This one does not need to implement the InfoConsumer interface. The
Information Consumer, which implements the InfoConsumer interface, is informed about
changes of the information, for which it subscribed via the Subscribe interface.

Figure 10-12 Information Sharing services

Figure 10-13 Information Service interfaces

Information
Service

Error
Reporting

Service

Event
Monitoring

Service

Online
Histogramming

Service

Inter Process Communication

<<interface>>
InfoProvider

<<interface>>
InfoConsumer

Send
Command

Publish/
UpdateGet Info

Information
Consumer

Notify

Subscribe

Information
Provider

Information
Service

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

162 10 Online Software

10.5.3.2 Error Reporting Service

The Error Reporting Service (ERS) provides transportation of the error messages from the soft-
ware applications which detect these errors to the applications which are responsible for their
handling. Figure 10-14 shows interfaces provided by the Error Reporting Service.

An Information Provider can send the error message to the ERS via the Send Error interface.
This interface can be used by any application which wants to report an error. In order to receive
the error messages an Information Consumer has to implement the ErrorReceiver interface and
construct the criteria which defines what kind of messages it wants to receive. This criteria has
to passed to the ERS via the Subscribe interface.

10.5.3.3 Online Histogramming Service

The Online Histogramming Service (OHS) allows applications to exchange histograms. The
OHS is very similar to the Information Service. The difference is that the information which is
transported from the Information Providers to the Information Receivers has pre-defined for-
mat. Figure 10-15 shows interfaces provided by the Online Histogramming Service.

Figure 10-14 Error Reporting Service interfaces

Figure 10-15 Online Histogramming Service interfaces

<<interface>>
ErrorReceiver

Information
Consumer

Notify

Subscribe

Error Reporting
Service

Information
Provider

Send
Error

<<interface>>
HistoProvider

<<interface>>
HistoReceiver

Send
Command

Get Histo

Information
Consumer

Update Histo

Subscribe

Information
Provider

Online
Histogramming

Service
Publish/

Update Histo

<<application>>
Histogram Display

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

10 Online Software 163

The OHS sub-package will provide also a human user interface in a form of an application. This
application is called Histogram Display and can be used by the TDAQ operator to display avail-
able histograms.

10.5.3.4 Event Monitoring Service

The Event Monitoring Service (EMS) is responsible for transportation of physical events or
event fragments sampled from well-defined points in the data flow chain to the software appli-
cations which can analyse them in order to monitor the state of the data acquisition and the
quality of physics data of the experiment. Figure 10-16 shows main interfaces provided by the
Event Monitoring Service.

The application which is able to sample events from a certain point of the data flow has to im-
plement the Event Sampler interface. When the Information Consumer requests the samples of
events from that point, the EMS system ask the Information Provider via the Start Sampling in-
terface to start sampling process. The Information Provider samples events and provides them
to the EMS via the Add Event interface. When there are no more Information Consumers inter-
esting in event samples from that point of the data flow chain, the EMS system ask the Informa-
tion Provider via the Stop Sampling interface to stop sampling process.

There are also two types of interfaces for the Information Consumer. One is a simple Get inter-
face which allows consumer to ask event samples one by one when they become necessary. This
interface will be used for example by the Event Dump application that implements a human
user interface to the EMS system. A second interface is based on the subscription model. Using
it the Information Consumer can ask the EMS system to supply the samples of event as soon as
they are sampled by the Information Provider. This interface is more suitable for the monitoring
tasks which need to monitor events for a long time in order to accumulate the necessary statis-
tics.

10.5.4 Application of Information Sharing Services to the TDAQ sub-systems

Usage of the information services by the other TDAQ systems, concentrating on differences with general
use.

Figure 10-16 Event Monitoring Service interfaces

<<interface>>
EventSampler

<<interface>>
EventReceiver

Start/Stop
Sampling

Get Event

Information
Consumer

Add Event

Subscribe

Information
Provider

Event Monitoring
Service

Add
Event

<<application>>
Event Dump

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

164 10 Online Software

Should be provided by TDAQ systems

This sub-section should only exist if the information is not already covered in Chapter 7, “Monitoring”.

10.5.5 Prototype evaluation

The prototype implementations have been done for all the Information Sharing services. These
prototypes are aiming to proof the feasibility of the chosen design and implementation technol-
ogy for the final TDAQ system, and to be used for the ATLAS test beams. This chapter contains
description of the services implementation along with their performance and scalability test re-
sults.

10.5.5.1 Description of the Current Implementation

The Online Software provides prototype [10-4] implementations for all the Information Sharing
services. Each service is implemented as a separate software package with both C++ and Java
interfaces. All the services are partitionable in a sense that it is possible to have several instances
of each service running concurrently and fully independently in different TDAQ partitions.

The Information Sharing services implementation is based on the Common Object Request Bro-
ker Architecture (CORBA) defined by the Object Management Group (OMG). CORBA is a ven-
dor-independent specification for an architecture and infrastructure that computer applications
use to work together over networks. The most important features of the CORBA are: object ori-
ented communication, inter-operability between different programming languages and differ-
ent operating systems, object location transparency.

10.5.5.2 Performance and scalability of current implementation

The most exhaustive tests have been done for the Information Service which provides the most
general facility for the information sharing. The other services are implemented on the same
technology and will offer the same level of performance and scalability as the IS.

The test bed for the IS test consists from 216 dual-pentium PCs with processor frequency from
600 to 1000 MHz. [10-3] The IS has been set up on one dedicated machine. Another 200 ma-
chines have been used to run from 1 to 5 Information Providers on them. Each Information Pro-
vider publishes one information object at the start and then updating it once per second. The
last 15 machines were used to run 1, 5, 10 or 15 Information Consumers which subscribe for all
the information in the IS. Whenever an Information Provider changes the information, this new
information was transported to all the Information Consumers.

The time for transporting information from one Information Provider to all the subscribed In-
formation Consumers have been measured. Figure 10-17 shows the average of the measured
time as a function of the number of Information Providers working concurrently.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

10 Online Software 165

10.6 Integration tests

Online integration tests, binary integrations of the Online Software with other components, and experi-
ence from testbeam deployment will be presented.

10.7 References

10-1 Online Software Requirements
http://atlas-onlsw.web.cern.ch/atlas-onlsw/documents/documents_page.htm

10-2 Online Software Architecture
http://atlas-onlsw.web.cern.ch/atlas-onlsw/documents/documents_page.htm

10-3 Test Report of Large Scale and Performance tests, January 2003, in preparation

10-4 Summary document used as input to the ATLAS TPR document
Altas DAQ-1 technical notes
Conference Papers
http://atlas-onlsw.web.cern.ch/atlas-onlsw/documents/documents_page.htm

10-5 Notes on technology evaluation - to be written

10-6 References to external documents on used or evaluated technology

Figure 10-17 Time spent to transport one information object from one Information Provider to a number of
Information Consumers vs. the number of concurrent Information Providers.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

166 10 Online Software

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

11 DCS 167

11 DCS

We consider that the level of detail presented in the chapter, as well as its structure should be respected.
However, there we expect changes in the wording and in the logical connections between the different sec-
tions.

11.1 Introduction

The principle task of DCS is to enable the coherent and safe operation of the ATLAS detector.
Safety aspects are treated by DCS only at the least severe level. All actions initiated by the oper-
ator and all errors, warnings and alarms concerning the hardware of the detector are handled
by the DCS. Concerning the operation of the experiment, an intense interaction with the DAQ
system is of prime importance.

+ Description of what is contained in this chapter and what it has been presented in chapters 1, 2, 3 and 5
(These chapters are needed before).

11.2 Organization of the DCS

The architecture of the DCS and the technologies used for its implementation are strongly con-
strained by environmental and functional reasons. The DCS consists of a distributed Back-End
(BE) system running on PCs, which will be implemented with a Supervisory Control And Data
Acquisition system (SCADA), and of the different Front-End (FE) systems.

The DCS FE instrumentation consists of a wide variety of equipment, from simple front-end ele-
ments like sensors and actuators, up to complex computer systems that are connected to the
SCADA stations by means of standard fieldbuses. A SCADA run-time database contains
records of all equipment where the data values are stored.

The equipment of the DCS will be geographically distributed in three areas as shown in figure
XXX: the main control room at the surface of the installations, the underground electronics
rooms USA15 and the detector’s cavern, UX15. The SCADA component will be distributed over
the two first locations while the front-end equipment will be placed in USA15, US15 and UX15
as shown in figure XXX.

The Front-End (FE) electronics in UX15 (see figure 1.3) is exposed to radiation and to a strong
magnetic field up to 1.5 T. The instrumentation in the cavern must be radiation-hard or tolerant
to levels of 1–105 Gy per year in the muon subdetector and inner tracker, respectively. In the fol-
lowing, only the DCS FE equipment located outside of the calorimeters in ATLAS where the
dose rate is of the order of 1 Gy/year will be addressed.

The equipment in the detector’s cavern will be interfaced via fieldbuses, to FE computer equip-
ment located in the underground electronics room USA15 and US15. The former is accessible
during operation and whereas the latter, will not be accessible during operation due to the
remaining radiation levels. The equipment at this level will consist of workstations for subde-
tector experts for the supervision of individual partitions, mainly during commissioning and
maintenance periods. It is foreseen to use a dedicated control computer for each detector. These
systems are called Subdetector Control Stations (SCS) in figure XXX Figure needs to be changed

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

168 11 DCS

XXX and they will run the SCADA software collecting data from the front-end devices in their
partition.

The Complex Front-end Systems (CFS) at this layer will not run SCADA and will be dedicated
to specific tasks. The CFS are normally connected to SCS over a dedicated Local Area Network
(LAN). CFS can also be placed in UX15 if they support the hostile environment.

The main control room will be located in the SCX1 building at the surface of the installations.
This area will always be accessible to the personnel. The equipment will consists of general-pur-
pose workstations, which will be linked to the control layer through a LAN providing TCP/IP
communication. The workstations will retrieve information from the SCS of the different sub-
systems underneath and can be used to interact with them by means of commands or messages.

The DCS can be partitioned into vertical slices as shown in figure XXX (ref to the picture below). Such a
partition can be operated completely independent from other slices of the DCS and offers full SCADA
functionality to its users. A vertical slice controls a subsystems of the ATLAS detector, where a subsystem
is defined as an arbitrary part of the detector, e.g. the high voltage system of a subdetector or the subdetec-
tor itself.

11.3 Front-End System

The front-end equipment consists of controllers, which connect to the hardware, either as sepa-
rate modules or as microprocessors incorporated in the front-end electronics. Field instrumenta-
tion like sensors and actuators will be of various types and it will be tributary to the
requirements for the detector hardware.

This equipment is distributed over the whole volume of the detector with cable distances up to
200 m. The distribution underground is governed by two conflicting constraints. Because of the

Figure 11-1 Geographical deployment of the DCS.

S
C
X
1

U
S
A
1
5
,
U
S
1
5

F
ro
n
t-E

n
d
S
y
stem

B
ack

-E
n
d
S
y
stem

Local Area Network

Partition 3

Supervisory

only Partition m

U
X
1
5

Partition 2

Common Infrastructure

Subdetector Control Stations (SCS)

Partition 1

Expert

Workstations

ServerOperation

Subdetector 1 Subdetector 2a Subdetector n

Detector

Sub-system

Sensors
Actuators

Fieldbus 200m�Fieldbus 200m�

ELMB
Electronic

Rack
ELMB

ELMB

ELMB

Rack PCRack PC

Power

Supply

Cooling
Interlock

Box

TestTest

Rack PCRack PC

ELMB

Alarms

CFSCFS

HV
Barrel
HV
Barrel

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

11 DCS 169

radiation level, magnetic field, limited space available for equipment and the inaccessibility at
UX15 during beam time, the equipment should be located in USA15. However, complexity, cost
and technical difficulties of cabling suggest condensing the data in UX15 and transferring only
the results to USA15.

The harsh environment limits the types of technologies that may be used. CERN recommends a
small number of fieldbuses and ATLAS has chosen the CAN fieldbus as the main standard for
this area. The CAN fieldbus is reliable, may be used over large distributed areas, does not use
magnetic sensitive components and has good support from industry. To ensure successful oper-
ation of equipment in the cavern, the “ALTAS Policy on Radiation Tolerant Devices” [ref] has
been formed to give specific rules concerning testing and qualification of radiation tolerant elec-
tronics.

11.3.1 Embedded Local Monitor Board (ELMB)

Due to the harsh environment, the large number of channels required and the low cost required
per channel, there is no commercial solution which exists. Therefore, a general purpose IO
device has been developed called the ELMB.

The ELMB is a single, credit card sized PCB which may be embedded onto custom front-end
equipment or may be used in a stand-alone mode. It has been designed with low power con-
sumption so that it may be powered remotely via the fieldbus. It provides 64 high-precision
analog input channels each of 16-bit accuracy. As well as the analog inputs, there are 8 digital
input lines, 8 digital output lines and 8 configurable (either input or output) digital lines. Other
interfaces are available such as a serial port allowing JTAG or other protocols to be imple-
mented.

The standard software that is pre-loaded into the ELMB allows for communication over a CAN
field bus using the higher level protocol CANopen. The standard functionality gives ‘plug and
play’ usage for the analog inputs and digital inputs and outputs.

The ELMB fulfills the majority of requirements of the ATLAS subdetector applications in terms
of accuracy, stability and functionality. It has been tested and qualified to operate in radiation
and a magnetic field giving long term operation without manual intervention.

11.3.2 Other FE equipment

All four experiments in the LHC have similar requirements for front-end equipment. JCOP pro-
vides solutions and support for standard devices such as high and low voltage power supplies,
PLCs and other common front-end equipment, as well as their interfaces into the SCADA sys-
tem. ATLAS will use many of these standards as recommended for the four LHC experiments.

Other non-standard FE equipment has to be mentioned here: e.g. alignment and calibration systems.

11.4 The Back-End System

The functionality of the BE system is two-fold: It acquires the data from the front-end equip-
ment and it offers supervisory control functions, such as data processing, displaying, storing
and archiving. This enables the handling of commands, messages and alarms.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

170 11 DCS

The BE system will be hierarchically organized to map the natural partitioning of the experi-
ment into subdetectors, systems and subsystem. The BE hierarchy allows for the dynamic split-
ting of the experiment into independent partitions, which can be operated in stand-alone or
integrated modes. The operation of the different subdetectors will be performed by means of
Finite State Machines (FSM), which will handle the states and transitions of the different parts
of the DCS. It is envisaged to have a FSM per subdetector. The coordination of the different par-
titions will be performed by means of commands and messages. The command flow is down-
wards, whereas the message exchange take place in either direction the within the slice. No
horizontal communication is foreseen between different slices or amongst the components of an
slice.

11.4.1 Functional Hierarchy

In order to provide the required functionality the BE of the DCS will be logically organized in
three levels as shown in figure XXX. The actions on the operator time-scale are performed at the
upper level, while the RT operations are performed at the lower levels. In addition, data and
alarm archiving and logging of incidents and commands will be provided at each of these lev-
els. Remote access to a well-defined set of actions to be performed by the two upper levels of the
BE hierarchy will also be provided subject to proper access authorization.

Global Control Stations

The overall control of the detector will be performed by the uppermost level of the BE system,
which consists of the Global Control Stations. These stations are envisaged to provided high
level monitoring and control of all subdetectors and technical infrastructure. The full control of
the detector is provided at only lower levels in the hierarchy. At this level, different services will
be provided like the DCS Information Service to handle the communication with the external
systems, namely the LHC accelerator, the CERN infrastructure and the Detector Safety System,
or web and database services. Information for these subsystems will be used to build the overall
status of the experiment. Bidirectional data exchange between the DCS and the TDAQ system
will also be managed at this level. No command exchange between the TDAQ and the DCS is
foreseen at this level.

Figure 11-2 Hierarchical organization of the Back-End system of the DCS in three functional layers

LHC

CERN

Magnet

DSS

DCS_IS

ATLAS

CIC Pixel SCT TRT LAr Tile MDT TGC CSC RPC

EC1 BL L1 L2 Cooling HV LVEC2

Global Control Stations

Subdetector Control Stations

Subsystem Control Stations

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

11 DCS 171

Subdetector Control Stations

The Subdetector Control Stations are placed at the intermediate of the BE hierarchy. There will
be one SCS per subdetector and an additional SCS to handle the monitoring of the common
infrastructure in ATLAS called Common Infrastructure Controls (CIC). The later will be inter-
faced with the DCS Information service in the layer above. All actions on a given subdetector
provided at the Global Control Stations are also provided at this level. In addition, the SCSs
allow for the full and stand-alone local operation of the subdetector by means of dedicated
graphical interfaces. The SCSs also handle the communication with the services of the layer
above. It is foreseen to have a direct connection from the SCSs to the DCS Information service to
provide the different SCSs with the status of the external system, namely the LHC accelerator,
the Detector Safety system, CERN services and the ATLAS magnet, as well as with the environ-
mental parameters of the common infrastructure. The SCS handle the co-ordination of all sub-
systems underlying in the layer below and are the responsible for the validation commands
issued by the operator from the global control stations in the layer above or directly from the
TDAQ run control. If low level control is required by the issued actions, e.g. ramp up high volt-
age, these commands can be propagated to the subsystems in the layer below for their execu-
tion. The overall status of the subdetector is assembled (collated???) and pass on to the TDAQ
system via the DAQ-DCS communication software, which is described in section XXX, and to
the control stations in the layer above.

Subsystem Control Stations

The bottommost level of the BE hierarchy is constituted by the Subsystem Control Stations,
which handle the low level monitoring and control of the different systems and services of the
detector. The organization of this level for a given detector could be performed attending to
either geographical or functional criteria. In the former the arrangement follows the natural par-
titioning of the detector in sections, subsection, etc. whereas in the second approach, the organi-
zation is decided as a function of the different services of the subdetectors, e.g. cooling, high-
voltage, etc. This level of the hierarchy is directly interfaced to the FE system. Besides the read-
out and control of the equipment, it also performs calculations and fine calibration of the raw
data from the FE and comparison of the values with preconfigured thresholds for the alarm
handling. The station placed at this level will executed the commands propagated from the
SCSs in the layer above although they can also execute predefined automatic actions if required.

11.4.2 SCADA

The BE system of the ATLAS DCS will be implemented using a Supervisory Control And Data
Acquisition (SCADA) product. SCADA systems [37] are commercial software packages nor-
mally used for the supervision of industrial installations. They gather information from the
hardware, process the data and present them to the operator. Even though SCADA products are
not tailored to LHC experiment applications, many of them have a flexible and distributed
architecture and, because of their openness, are able to fulfil the demanding requirements of the
ATLAS DCS.

Besides basic functionality like the Human Machine Interface (HMI), alarm handling, archiving,
trending or access control, SCADA products also provide a set of interfaces to hardware, e.g.
CERN recommended fieldbuses and PLCs, and software, e.g. Application Program Interface

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

172 11 DCS

(API) to communicate with external applications, or connectivity to external databases via the
Open or Java DataBase Connectivity (OBDC and JDBC respectively) protocols.

SCADA products constitute a standard framework to develop the applications leading to a
homogeneous DCS. Its usage saves development effort reducing the work for the subdetector
teams. In addition, they follow the evolution of the market, protecting against changes of tech-
nology like operating system or processor platforms.

11.4.3 PVSS

A major evaluation exercise of SCADA products [38] was performed at CERN in the frame of
the Joint COntrols Project (JCOP), which concluded with the selection of the PVSS-II, from the
austrian company ETM, to be used for the implementation of the BE systems of the four LHC
experiments.

PVSS is a device-oriented product where process variables that logically belong together are
combined in hierarchically structured data-points. Device-oriented products adopt many prop-
erties from object-oriented programming languages like inheritance and instantiation. These
features facilitate the partitioning and scalability of the application.

PVSS provides the interfaces to connect to external databases or systems, like the DAQ system
or LHC accelerator, and the capability to extend the functionality of the product to interface cus-
tom applications or equipment (e.g. availability of driver development toolkit).

It is conceived as distributed systems. The single tasks are performed by special program mod-
ules called managers. The communication among them takes place according to the client-
server principle, using the TCP/IP protocol. The internal communication mechanism of the
product is entirely event-driven. This characteristic makes PVSS specially appropriate for detec-
tor control since, systems which poll data values and status at fixed intervals, present too big an
overhead and have too long reaction times resulting in lack of performance.

The managers can be distributed over different PC running either Microsoft Windows or Linux.
The communication between them is internally handled by PVSS-II. This has been one of the
crucial points in the selection of this product since the DAQ system of the ATLAS experiment is
been developed entirely under Linux, where as the DCS will widely use Windows.

PVSS allows to split the supervisory software into small application communicating over the
network and it is imposed by the distribution of the DCS equipment in different locations in
ATLAS.

11.4.4 PVSS Framework

Although PVSS-II will be used as the basis of the LHC experiment controls, this has been found
not to be sufficient to develop an homogeneous and coherent system. An engineering frame-
work on top of PVSS-II is being developed in the frame of JCOP. XXXHas JCOP been mentioned
before?XXX The PVSS framework is composed of a set of guidelines, tools and components
commonly used by the four LHC experiments like HV and LV systems. This framework will
lead to a significant reduction of the development and maintenance work to be performed by
the subdetector teams and to an homogeneous system by means of the standardization of the
equipment utilized. It also addresses the interoperability of the different components included
in the framework. The ELMB has been integrated into PVSS as a component of JCOP frame-

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

11 DCS 173

work with the aim of facilitating the usability of the ELMB node to the ATLAS users but also to
ensure the homogeneity of the SCADA software. The ELMB component provides all PVSS
infrastructure needed to work with the ELMB in a standard mode. This package also comprises
a so-called a “top-down” configuration tool, which handles the configuration of all non-SCADA
interfaces to the FE system.

All DCS systems from the global level to the local control stations will need some commonly
used services. These applications will be implemented once and may be used at all levels. The
main services to be provided will be for data and alarms, where both numerical displays and
trending (with the native widgets and external trending tools) will be used, web based presen-
tation of information and logging of all actions whether performed by an operator or an auto-
matic process.

11.5 Integration FE-BE

The PVSS-II product will be used as SCADA system for the implementation of the supervisor
layer of the ATLAS/DCS. There are several interfaces which allows to connect PVSS-II based
systems to hardware.

• Dedicated drivers for PVSS-II; PVSS-II has the drivers for modbus devices, PROFIBUS
and some others. It also contains the API to develop drivers by users.

• PVSS-OPC client; OPC is a wide used industrial standard. All commercial Low and High
voltage systems are supplied with the OPC servers.

• DIM software, which is a communication system for distributed and multi-platform envi-
ronments. DIM provides a network transparent inter-process communication layer devel-
oped at CERN.

The OPC due to the wide spread usage and the big support from industrial has been chosen as
main interface from the SCADA to hardware devices. The main purpose of this standard is to
provide the standard mechanism for communicating to numerous data sources. The OPC is
based on the Microsoft Windows technology. The specification of this standard describes the
OPC Objects and their interfaces implemented by OPC server. The architecture and specifica-
tion of the interface was designed to facilitate clients interfacing to remote server. An OPC client
can connect to more then one OPC Server, in turn an OPC Server can serve several OPC clients.
All OPC objects, consequently, are accessed through interfaces.

In turn the ELMB is a CANopen device and will be widely used in the implementation of the
subdetector front-end system.

CANopen is a high level protocol for the CAN-bus communication. This protocol is widespread
as well. CANopen standardizes the types of CAN-bus messages (objects) and defines the sense
of them. It allows to use the same software in order to manage of CAN nodes of different types
and from different manufacturers.

To connect the ELMB to SCADA the OPC CANopen server has been develop. Others possibili-
ties will also be used in suitable cases.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

174 11 DCS

11.5.1 OPC CANopen server

On the market there are a lot of the CANopen servers. But all of them are tailored to their spe-
cific hardware interface cards and they do not provide the CANopen functionality required by
the ELMB.

The OPC CANopen server works as the CANopen master of the bus handling network man-
agement task, node configuration and transmitting data to the OPC client. The OPC CANopen
Server consists of two main parts.

• The main part is an OPC server itself. It implements all the OPC interfaces and main
loops. Any application interacts with this part through interfaces. The CANopen OPC
server transmit data to a client only on change, which results in a substantial reduction of
data traffic.

• The second part “Can Bus component” is hardware dependent. It interacts with a CAN
bus driver and controls CANopen devices.

Several busses with up to 127 nodes each, in accordance with CANopen protocol, can be oper-
ated by the OPC CANopen server. The system topology in terms networks and nodes per bus is
modelled in start up time in the address space of the OPC CANopen server from a configura-
tion file.

11.6 Read-out chain

The complete read-out chain ranges from the I/O point (sensor or actuator) to the operator
interface and is composed of the elements described above: ELMB, CANopen OPC Server and
PVSS-II. Apart from the data transfer, it also comprises tools to manage the configuration and
the settings and status of the bus. PVSS-II models the system topology in term of CANbus,
ELMB and sensor in the internal database by data-points. These data-points are connected to
the corresponding items in the OPC server in order to send the appropriate CANopen message
to the bus. In turn, when an ELMB sends a CANopen to the bus, the OPC server will decode it,
set the respective item in its address space, which transmits the information to a data-point in
PVSS. The different elements of read-out chain can perform the following functions.

The ELMB digitizes the analogue inputs and drives the digital input and output lines. Different
settings can be applied to the ADC, including choosing as data output format either raw counts
or calibrated micro-Volts. Data are sent either on request from the supervisor, or automatically
in predefined intervals, or when they have changed. As the ELMB is in most cases exposed to
ionizing radiation, it checks also for possible radiation-induced errors (e.g. memory or register
changes) and tries to correct them.

The OPC server transmits data together with quality information when they have changed. It
can optionally perform calculations, e.g. to convert the data into physical quantities in appropri-
ate units.

The SCADA system applies the individual calibration procedures and compares the data with
pre-defined thresholds. In this way warnings, alarms, and automatic actions are established.
The SCADA also archives the data and allows its visualization.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

11 DCS 175

11.6.1 Performance of the DCS readout chain

To investigate the performance and the scalability of the DCS readout chain to the size required
by ATLAS, a full vertical slice (or full branch) consisting of 6 CANbuses having 32 ELMBs each
was assembled.

The aim of this test was to study the behavior of the system with these characteristics to dis-
cover settings required in order to achieve the optimal results and to establish limits of the read-
out chain. These limits define the granularity of the system in terms of number of ELMB per
CANbus and the number of buses per PVSS system. In particular, the following was to be
inspected and investigated:

• Remote powering of the ELMB nodes via the bus. The radiation levels in the detector
cavern impose that the power supplies will have to be placed in the underground
electronics rooms US15 and USA15. Therefore, the power for the nodes will have to be
fed remotely via the CANbus with distances up to 150 m.

• Bus loading, which determines the number of nodes per bus. The data traffic on the bus
has to be uniformly distributed over time in order to keep the bus load low under
normal operation. In ATLAS the bus occupancy will be kept below 60% in order to
cope with a higher loads which may arise in case of problems like power cuts. In these
cases, an avalanche of channel information which must be handled by the system.

• Optimization of the work balance amongst the different processing elements in the
readout chain. The functions to be performed by the ELMB, CANopen OPC server and
PVSS are homogeneously distributed to ensure equal load of each of these components
and to avoid bottle-necks.

• Optimization of the system performance by tuning of different software settings such
as update rates for OPC and the readout rate.

• Determination of the overall performance of the systems, which defines the number of
CANbuses with these characteristics per PVSS system, and that will strongly condition
the topology of the different subsystems.

The setup employed in the test, shown in figure 1. The system of CANbuses was operated from
PVSS-II using the CANopen OPC server and a Kvaser CAN interface. The bus lengths were 350
m in all cases, in order to fulfil the ATLAS requirements with a broad margin. Up to 32 ELMB
were connected at the end of each CANbus. The total number of channels in this system was:
12288 analog inputs, 3072 digital outputs, and 1536 digital inputs. It is important to note that the
amount of channels in the set up described here, is of the order of magnitude of some large
applications in ATLAS.During the test, the readout rate was increase in order to push the sys-
tem to the limit. When big bursts of data arrive at PVSS-II very rapidly, the different messages
are internally buffered. Two different situations can be distinguished:

• Steady run, where all messages sent by the ELMBs to the bus are stored to the PVSS-II da-
tabase and, in addition, the CPU memory usage remains constant, i.e. no buffering is per-
formed at the PVSS-II or OPC level.

• The so-called avalanche run, where the fastest possible read-out rate is estimated for a a
short period, typically a few minutes. Under these circumstances, although all messages
are archived to the PVSS database, the bus data flow is so high, that messages cannot be
treated in real time and are buffered at the SCADA level therefore, leading to an increase
of the memory usage. It is important to note that although long term operation under
these conditions would not be possible, this situation can occur in case of major problems
of the equipment monitored, like power cuts, and must be handled by the system.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

176 11 DCS

A readout rate of at least 30 s is required for a steady run in a system of 6 buses with 32 ELMB
nodes each (12288 analog input channels). Under these conditions, the fastest readout rate in
avalanche mode is limited to 8 s for several minutes. The examination of the CPU load showed
that in all cases, the results presented are only limited by the CPU work load due to the PVSS-II
managers as a consequence of the buffering of the CAN messages. These results indicate that
the operation of the readout is strongly constrained by the performance of PVSS-II.

11.6.2 Long term operation of the readout chain

Mention as introduction that the DCS has to run 24/365.

The long-term operation of the full readout chain was tested with a number of ELMBs in a radi-
ation environment similar to that expected in the ATLAS cavern, though with a much greater
dose rate. This environment allows the different error recovery procedures implemented at the
different levels of the readout chain, which are required due to radiation effects to be tested. A
CAN bus of greater than 100 m was connected to a PC running the CANopen OPC server and
PVSS-II. The test ran for more than two months, which was equivalent to more than 300 years at
the expected ATLAS dose rate in terms of TID. The CAN controller in the ELMB ensures that
messages are sent correctly to the bus, and will take any necessary action if errors are detected.
Bit flips were seen during the test at the ELMB using special test software, and these are also
handled at the ELMB level. The OPC server ensures all ELMBs on a bus are kept in the opera-
tional state, monitoring the messages on the bus in case of power glitches. At the highest level,
PVSS scripts were utilized to monitor the current consumption for the bus (where increase in
current is an indication of latch-up or damage from long term TID) and to reset ELMBs if com-
munication has been lost. Through this script, the power supply for the bus was controlled
allowing for hard resets to be performed. No user intervention was necessary during the time of
the test.

Figure 11-3 ELMB full branch test setup. (To be changed: Show bus multiplicity)

120 �

120 �

0x3F 0x3E 0x32 0x31 0x30

CANbus

350 m

32 ELMBs

CANAnalyzer

0.5 m
CANopen

TCP/IP (PVSS -II)

16 V PS

PVSS-II

(Supervisory Station)

PVSS-II
+

OPC Server

(Local Control Station)

Kvaser CAN card

Back-End

Front-End

512 MB, 1.8 GHz

128 MB, 800 MHz

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

11 DCS 177

11.7 Applications

The components and tools described above are used to build the applications, which control
and monitor the experiment equipment. The applications for the supervision of the subdetec-
tors is the responsibility of the subdetector groups and is described in the relevant TDRs. All
equipment, which does not belong directly to a subdetector will be supervised by a SCS called
Common Infrastructure Controls (CIC), which is hierarchically situated at the level of a subde-
tector. It monitors the subsystems described below.

All racks, both in the electronics rooms and in the cavern will comprise a control unit based on
the ELMB. It monitors the basic operational parameters like temperatures, air flow, cooling
parameters, etc. and also user-defined parameters. Some racks will have the option of control-
ling the electric power distribution. The crates which are housed in these racks have however
usually their own controls interface.

General environmental parameters like temperature, humidity, pressure, radiation level etc.
will also be monitored by the CIC. Parameters of the primary cooling system belong also this
category. The individual subdetector cooling distribution systems are however supervised by
the corresponding subdetector SCS.

All information collected is available to all other PVSS stations via a central DCS information
server. A subset of them will also be transmitted to the DAQ.

11.8 Connection to DAQ

In order to grant a coherent functioning of both DCS and the physics data acquisition the fol-
lowing functionality of communication between that systems is to be provided [11-6, 11-7]:

• Bi-directional exchange of data like parameters and status values;

• Transmission of DCS messages, like alarms and other error messages, to DAQ;

• Synchronization DCS with TDAQ run control and providing ability for DAQ to issue
commands on DCS (with feedback).

In accordance of the concept of TDAQ partitioning [11-3] the communication functionality
required should be provided for each needing it TDAQ partition independently of others.

Figure 11-4 DDC package in relation with the DCS and the Trigger/DAQ system.

Trigger/DAQ
Partition

Detector/DCS

Vertical

Slice

PVSS
System

Online
Software
Services

DDC
Package

Configuration

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

178 11 DCS

The TDAQ Online software package (see Ch.10) provides a series of services for Trigger/DAQ
inter-application communications of the content declared above for DCS communication. They
are the Information Service (IS) allowing to share the run time information (10.3.3.1), Error
Reporting Service (ERS) distributing application messages (10.3.3.2) and the Run Control pack-
age (see 13.2) running a finite state machine to represent and control/synchronize the states of
TDAQ subsystems of a partition. These services/subsystems will be used as the DAQ-side con-
nection points for the communication with DCS.

The PVSS II product (11.4.2) is provided with a powerful application program interface (API)
allowing full direct network access to the PVSS application runtime database. That API is DCS
side law level interface for DAQ – DCS communication.

The DAQ – DCS communication package (DDC) is to be developed on top of the interfaces
mentioned above as a generic tool configurable by end-user in terms of DAQ and DCS function-
ality (i.e., identification of data, messages and commands to be transferred). It provides the co-
operation of DCS (PVSS) world and Trigger/DAQ world as it is illustrated in fig. 11.8.1

The underlying subsection describe the DAQ – DCS communication software components with
their interfaces. The features belonging to all of them:

• Implemented as a PVSS API manager [11-8] integrates the program interface of corre-
sponding Online software service;

• Waits if a communication partner is not running and recovers lost connection;

• Being configured from the TDAQ configuration database – this interface is omitted in fig-
ures below.

The prototype of the DDC package has been tried in the test beam experiments of 2002 – 2003
and demonstrated satisfactory and reliable capability of working.

11.8.1 Data Transfer Facility (DDC-DT)

The data exchange in both directions is to be implemented via the Information Service of DAQ
Online software. The application keeps the data elements (parameters of the systems) declared
in the DDC-DT configuration being the same in both source and destination of that data. This is
done on the base of the subscription mechanism available for both sides. The possibility for
DAQ of requesting single read of specified DCS data is also provided.. Figure 11.8.2 shows the
interfaces to be used.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

11 DCS 179

11.8.2 Message Transfer Facility (DDC-MT)

The DCS message transferring to DAQ is to be implemented via the Error Reporting System of
DAQ. The interfaces used are drawn in fig.11.8.3.

This component delivers for DAQ DCS alarm messages on appearance and DCS text variables
to be interpreted as messages for DAQ, which have been defined in its configuration.

11.8.3 Command Transfer Facility (DDC-CT)

The DDC-CT subsystem (being like other components a PVSS API manager) is implemented as
a dedicated run controller (RC) to be included as a leaf into a TDAQ partition run control tree
(see 13.2). This run controller, like any other TDAQ run controller, is capable to execute stan-
dard commands causing its transitions as defined by the TDAQ partition finite state machine.
Except of that, it allows sending for DCS so-called non-transition commands (nt-commands) via
the Online software information service. The DDC-CT interfaces are shown in fig. 11.8.4.

Figure 11-5 DDC data transfer interfaces.

Figure 11-6 DDC message transfer interfaces.

Figure 11-7 DDC command transfer interfaces.

DCS PVSS
Application

Online
Inform ation
Service

DDC Data
Transfer

Notify

Subscribe

Getdata

Subscribe

Notify

Getdata

SetdataSetdata

DCS PVSS
Application

Online
Error

Reporting

DDC
M essage
Transfer

Notify

Subscribe

Send m essage

DCS PVSS
Application

ParentRun
Controller

DDC
Com m and
Transfer

Notify

Subscribe

Subscribe

RC-interface

Notify

Setdata

O nline
Inform ation
Service

RC-interface

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

180 11 DCS

The term non-transition emphasizes that those commands do not cause any finite state machine
transition. An nt-command may be issued by any TDAQ application (including the parent run
controller).

The content of a command (both run control and nt-command) and its execution is the responsi-
bility of DCS’s PVSS application. Mapping of the run control transitions onto certain set of com-
mands on DCS is to be done in the DDC-CT configuration.

11.9 Interface to External Systems

The term External Systems designates systems having their own control system with which the
DCS has to interact. ATLAS will gain access to external systems via the DCS. We can distinguish
two main external systems: the CERN technical infrastructure and the LHC accelerator. The
former consists of a number of subsystems like cooling and ventilation, electricity distribution,
radiation monitoring, etc. The Detector Safety System (DSS) and the Magnet Control System are
also considered part of the technical infrastructure. All these external systems must be concur-
rent into the general DCS. Although these systems are designed to react in case of problems,
early indications of their status must be notified to the DCS since they may have consequences
onto the detector and automatic corrective actions, driven by the DCS, may be required. The
DCS will reflect also the states of all these systems and, in many cases, will act as their user
interface.

The connection will support bidirectional information exchange and, in some cases, the sending
and receiving of commands. This interface will be unique for the 4 LHC experiments and it will
be developed in the framework of the JCOP.

11.9.1 CERN Technical Services

The technical services around the ATLAS detector include cryogenics and conventional cooling,
ventilation, gas system, electricity, radiation monitoring, low and high voltage power supplies.
The DCS will also have access to the control and status of infrastructure including AC mains, air
conditioning etc. These services will monitor the environment to guarantee the safety of the per-
sonnel and equipment and will enable the different subdetectors of the experiment to function
within their required operating conditions. Some of the systems will need feedback from the
subdetector to operate. This is the case for the gas system and cooling, where part of their
equipment consist of external stand-alone PLC or commercial I/O modules, whereas some
information come from the detectors themselves. Therefore, slow closed-loops maybe needed
between the DCS and this type of system.

11.9.2 Detector Safety System

As previously mentioned, the DCS is not responsible for the security of the personal nor for the ultimate
safety of the equipment. The former is the responsibility of the LHC-wide hazard detection systems,
whereas the latter has to be guaranteed by hardware interlocks and stand-alone PLC and is the responsi-
bility of the Detector Safety System. Although the information exchange between the DCS and the DSS
must be bi-directional, actions must go only in one direction. The DCS must not disturb the operation of
the safety system. However, warnings about problems detected by the safety system must be notified to
the DCS in order to take corrective actions or to shut down the problematic part of the detector. Control
access will also be handled by the CERN services and it will be needed at the DCS side.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

11 DCS 181

11.9.3 Magnet system

Due to its critical requirements [10] and complication, a dedicated PLC-based control system
will be implemented for the ATLAS magnet. The operator will not need direct control, although
a detailed online status and knowledge of all important parameters of the magnets is essential
for the operation of the detector and for the subsequent physics analysis. This dedicated system
will supervise and control the cryogenics, the cooling system, the power supplies and the
instrumentation of the magnet.

11.9.4 LHC

An robust interface between the experiment and the accelerator must be provided. Instanta-
neous beam parameters like the different types of background, beam position and luminosities
observed in the detector must be transferred from the experiment to the accelerator for conse-
quent tuning of the beam.

The experiment will also give all information on its status such as status of its magnets, in par-
ticular, the solenoid which acts directly on the beams, status of sensitive equipment like high
voltage on the sub-detectors and other status signals as well as global status signals such as the
operation state of the detector, setting up, etc. The DCS has to make sure that the detector is in
an appropriate state (e.g. voltage settings) before LHC is allowed to inject particles.

ATLAS may need the possibility to request actions like a fast beam dump should the backgrounds become
dangerous for the subdetectors or injection inhibit.

On the other hand, machine parameters like status signals for setting up, shut-down, controlled
access, stable beams, beam cleaning must be transferred from the accelerator to the experiment.
The machine should also provide information on the beam like emittance, focusing parameters,
energy, number of particles and a horizontal and vertical profile needed for offline physics anal-
ysis. Information on the vacuum conditions in the vicinity of and in the experimental straight
section, and position of the collimator are also of interest to the experiment.

The LHC has dedicated instrumentation for the comprehensive measurement of all these
parameters. The subset of operational parameters of the accelerator, relevant to the operation of
the detector or to the subsequent physics analyses have to be delivered to the DCS and must be
logged.

Although the exchange of many of these parameters is only needed during data-taking, a subset
of this information, like the integrated radiation doses in the different parts of the detector mea-
sured by the DCS, has to be known to the LHC at all times. Therefore, this communication is
required regardless the state of ATLAS. This is one main reason why this communication will
be handled by the DCS on the ATLAS side and not by the DAQ system.

11.10 References

11-1 New references to be added

11-2 H.J. Burckhart et al., “Vertical Slice of the ATLAS Detector Control System”,
submitted to 7th Workshop on Electronics for LHC Experiments, September 2001,
Stockholm (Sweden).

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

182 11 DCS

11-3 F. Varela Rodriguez et al., “ELMB Full Branch Test: Behaviour and Performance”,
ATLAS DCS Internal Working Note 13, October 2001.

11-4 F. Varela Rodriguez. “The Detector Control System of the ATLAS experiment: An
application to the calibration of the modules of the Tile Hadron Calorimeter”, PhD.
Thesis, CERN-THESIS-2002-035, April 2002.

11-5 http://www.kvaser.com

11-6 V. Filimonov, “Description of the CANopen OPC server v2.5”, http://
atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/DCS/ELMB/DOC/
OPCCOUserGuide.pdf

11-7 References from Connection to DAQ:

11-8 H.Burckhart, M.Caprini, R.Jones “Connection DCS - DAQ in ATLAS”, ATLAS DCS
IWN8, Nov 1999,

11-9 http://atlasinfo.cern.ch/ATLAS/GROUPS/DAQTRIG/DCS/dcs_daq_0.6.pdf.

11-10 R.Hart, V.Khomoutnikov “ATLAS DAQ - DCS Communication Software. User
Requirements Document”, Nov 2000,

11-11 http://atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/DCS/DDC/ddc_urd.pdf

11-12 <TDAQ Partitioning document> Probably, made already earlier at the document

11-13 <Reference to PVSS> Probably, made already earlier at the document

11-14

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

12 Experiment Control 183

12 Experiment Control

12.1 Introduction

The Experiment Control involves the supervision and coordination of the operational state of
the detector and its parameters and the control of the instrumentation and software involved in
the event readout An architectural overview of the Experiment Control has been introduced in
chapter [ref. to Architecture chapter]. The specific architecture of the systems involved has al-
ready been discussed in the previous chapters. Now the interaction of the various systems and
building blocks which provide the general control functionality required by the experiment is
described. Scenarios for physics data-taking and for calibration modes are discussed.

As already presented in the architectural view, TDAQ control and DCS control are two comple-
mentary and interacting systems. These systems have different tasks and requirements. Whilst
the TDAQ control is only required when taking physics or calibration data and during detector
commissioning and tests, the DCS has to operate with no interruption to ensure the safety of the
detector. The DCS is based on a SCADA system [12-5], while the TDAQ control is based on the
TDAQ Online Software [Chapter 10]. The necessary synchronisation to control systems which
are external to TDAQ is provided via DCS.

12.2 Control Coordination

The control of the experiment is given by the interplay between three systems: The LHC ma-
chine, the Detector control and the TDAQ control. For each of the them the status of the system
under control is expressed in distinct states.

12.2.1 Operation of the LHC machine

The phases of the LHC define a multitude of states [12-2] important for the internal functioning
of the machine. A subset is of direct interest for the interaction with the experiment control, in
particular those states which describe the condition of the beam with consequences for the oper-
ation of the detector. Phases with stable beam and collisions indicate that the detector is opera-
tional for data-taking.

The main phases of interest here are of the following type: filling the beam from the SPS into the
LHC, ramp, when the beam is accelerated up to its nominal energy, squeezing the beam, prepare
for physics and collide, physics with stable beam, beam dump and ramp-down and recover.

The various phases will be indicated directly by the LHC operation and by observation of LHC
equipment.

12.2.2 Operation of the DCS as a State Machine

The DCS must enable the stand-alone operation of the sub-detectors, as well as the coherent and
integrated operation of all sub-detectors for concurrent Physics data-taking. For these reasons,

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

184 12 Experiment Control

the operation of the different sub-detectors will be performed by means of Finite State Machines
(FSM). The FSM approach allows for sequencing and automation of operations and it supports
different types of operators and ownership, as well as, the different partitioning modes of the
detector required to fulfil the control needs in the various scenarios presented in the following.
The FSM will handle the transition of the different parts of the DCS through internal states. It is
envisaged to have one FSM per sub-detector and an additional FSM for the global operation of
the experiment. The states of the sub-detector FSM will be assembled from the status of the dif-
ferent parts or services of the detector, which are determined by the status of the FE equipment,
and from the status of the various environmental parameters monitored by the CIC station. The
states of the external system, interfaced via the DCS_IS described in section 11.8.1, will also be
considered, e.g. the state of the LHC accelerator.

The global operation of the BE system will be performed by a single FSM whose states will be
built from the states of the different sub-detectors’ FSM, previously configured, and the status
of the external systems. Any transition issued at this level will be propagated to the underlying
sub-detectors’ FSM included in the running mode of the experiment.

12.2.3 Operation of the TDAQ States

Three main TDAQ states from initial to stand-by and running have been introduced in
Chapter 3.1. Here the states are further sub-divided as explained in [12-3] as shown in
Figure 12-1. Two states are placed between initial and running. Before arriving to the initial state
the software infrastructure is initialized. The loading of the software and configuration data is
performed which brings the system to the loaded state. The system configures the involved
hardware and software and enters the configured state and the TDAQ system is ready to start
data-taking. In the subsequent running state the TDAQ system is taking data from the detector.
Data-taking can be paused and the L1 busy is set.

Figure 12-1 TDAQ states

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

12 Experiment Control 185

The checkpoint is a transition in a running TDAQ system which is triggered by a change in con-
ditions or by an operator. It results in the following events to be tagged with a new run number
and does not need the synchronisation, via run control start/stop commands, of all TDAQ ele-
ments. Some components in the TDAQ control system require TDAQ sub-states which will be
used for synchronisation during certain transitions.

12.2.4 Connections between States

As it has been presented in the previous sections, the LHC, the DCS and the DAQ system will
each be operated through states. The synchronization of these systems is required in order to
ensure coherent data taking and the integrity of the detector. The communication with the LHC
will be handled by means of the DCS as described in Chapter 11. The DCS monitors the status
of the LHC continuously and transfers this information in real time to the DAQ system in order
to prepare the detector for Physics data-taking. On the other hand, parameters measured by the
TDAQ system like beam position or individual bunch luminosity, can be used to tune the beams
and therefore, must be transferred to the LHC via the DCS.

The actions on the sub-detector hardware performed by the DCS will have to be coordinated
with the states of the LHC machine to ensure the safe operation of the sub-detectors. This is the
case of the ramping up of the high voltage of some sub-detectors, like the Pixel or SCT trackers.
These sub-detectors are more vulnerable in case of insufficiently focused beam if the high volt-
age is on. For these sub-detectors this kind of actions on the detector will only be taken if the ac-
celerator provides stable beams. For this reason, the DCS states will closely follow the operation
of the LHC operation. The LHC state will be related to a pre-defined set of operational condi-
tions of the sub-detectors DCS and of the DAQ system. Periods of particle injection or accelera-
tion in the LHC may be used by the DCS or the DAQ to initialize and configure the different
parts of the systems, like the front-end electronics. Information on the internal states of the DCS
will be transferred to the DAQ system via the DDC described in section 11.8 . Once the safe op-
eration of the experiment instrumentation is ensured from the LHC machine, the DCS will
bring the sub-detectors to the required state for data-taking and it will communicate their avail-
ability to the DAQ system by means of the DDC. During Physics data-taking there will be an in-
tense bi-directional communication between these systems. An example is the request by the DCS
to the LHC for beam dump if large backgrounds are observed by the DAQ system in the detector.

The TDAQ control is only partially coupled to the LHC and the DCS states depending on the
type of run. For physics runs it must be ensured that the LHC is providing stable beam and col-
lisions are taking place and that DCS has brought the detectors into the corresponding state.
The TDAQ system can generally be brought from initial to the configured state while the LHC is
ramping, sweezing and preparing for physics, and while the DCS prepares the detector for
data-taking. Then is ready for taking physics data and waiting in a stand-by mode for LHC and
DCS to be ready. For some of the calibration runs similar conditions apply for the selected detec-
tor. For other calibration, for example with cosmic rays or with an external source the co-ordina-
tion with the DCS is required but no co-ordination with the LHC states. For most TDAQ system
tests no c-ordination with other states need to take place.

may-be add a diagram

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

186 12 Experiment Control

12.3 Sub-system Control

The control functionality of the building blocks presented in the architectural view will be de-
scribed in the following paragraphs.

12.3.1 Online Software Control Concepts

remark: here the terms detector and sub-detector are used, this can be changed to whatever terms for those
items will be decided to be used for the TDR.

The TDAQ system is given by a large number of hardware and software components, which
have to operate in a coordinated fashion to provide for the data-taking functionality of the over-
all system. The organisation of the ATLAS TDAQ system in detectors and sub-detectors leads to
a hierarchical organisation of the control system. The basis of the TDAQ control is provided by
the ATLAS Online Software, which is explained in detail in chapter 10.3.

The basic element for the control and supervision is a controller. The TDAQ control system is
build of a large number of controllers which are distributed in a hierarchical tree following the
functional composition of the ATLAS TDAQ detector.

The concept is illustrated in Figure 12-2. As illustrated, four principle levels of control are cur-
rently foreseen. Additional levels can be added at any point in the hierarchy if needed. A top
level controller named root controller has the overall control over the TDAQ system. It super-
vises the next level of controllers in the hierarchy, the detector controllers or sub-system control-
lers. It is the responsibility of the detector controller to supervise the hardware and software
components which belong to this detector. The next control level takes the responsibility for the
supervision of the sub detectors which correspond to the TTC partitions [12-4]. On the lowest
level the so-called local controllers are responsible for the control of Read-out crates and alike.
Farm supervision and ROS hardware make use of the same controllers following a similar
structure, which is further discussed in 12.3.2 Data Flow Control and 12.3.3 HLT Farm Super-
vision.

A controller in the TDAQ system is characterised by its state following the TDAQ state model
described in Section 12.2.3. In any place of the hierarchy, a change of state is initiated and syn-
chronized from the higher level controller and sent down to the next lower level. From there in-
formation is returned to the next higher level when the requested transition has been
performed. Possible error conditions are also reported back to the next higher level.

A controller framework allows to handle the operations described above in a coherent way on
all the controllers in the system. On the other hand, it also gives the necessary flexibility to the
detector expert to customize each controller for handling the individual tasks on the system un-
der its control. These tasks take a wide range of variety from read-out hardware to event filter
farm control. The exact information on the relationship of the controllers and their responsibili-
ties is contained in the configuration database as detailed in the chapter 10.4.3 Architecture of
Databases.

The controllers have a number of responsibilities: Each controller is responsible for the initiali-
sation and the shutdown of software and hardware components in its domain. It is also respon-
sible for passing commands to child controllers and for signalling its overall state to its parent.
Of particular importance is the synchronisation necessary to start the data-taking. This is per-
formed by successive transitions through a number of intermediate states until data-taking is fi-

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

12 Experiment Control 187

nally started as described below in 12.4.1 Initialisation, Data-taking and Shutdown Phase.
Interaction with the shift operator via the user interface drives the operations via commands to
the highest level controller. The inverse series of synchronized transitions is traversed when
data-taking is stopped. If necessary, it is envisaged to introduce so called hidden states to allow
for further synchronisation points on the sub-system level.

During all the operational phases, each controller is responsible for the supervision of the oper-
ation of elements under its direct control and for the observation of the operations of its children
thus providing also for the task of error handling. In case of a malfunction of a detector, the con-
troller can start corrective actions and/or signal the malfunction by sending messages. Severe
malfunctions which are beyond the capabilities of a controller can be signalled by a state change
to its parent. It is then the role of the parent controller to take further actions. The design of the
control, supervision and event handling functionality is based on the adoption of a common ex-
pert system shell. Specific nodes will use different rules to perform their functions in addition to
a common rule base which handles the generally valid aspects.

12.3.2 Data Flow Control

The Dataflow control encompasses the ROS/ROD control and the Data Collection control.

The Dataflow control is comprised of the control of all applications and hardware modules re-
sponsible for moving the event data from the detector front-end electronics and LVL1 trigger to
the high level triggers (LVL2 and EF). It includes the control of the ROD crates, the RoI Builder,
the ReadOut System and the Data Collection applications, such as the Event Builder.

There are two flavours of local controllers in the DataFlow foreseen, both making use of the On-
line software infrastructure in the same way. The ROS controller is tailored towards the control

Figure 12-2 Online Software Control Hierarchy in TDAQ

Det1Det1

Sub-d2Sub-d2 Sub-d3Sub-d3Sub-d1Sub-d1

LoCtrlLoCtrl LoCtrlLoCtrl LoCtrlLoCtrlLoCtrlLoCtrl

…… DetnDetn……

RootRoot

Sub-SysSub-Sys

Sub-dnSub-dn

LoCtrlLoCtrl

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

188 12 Experiment Control

of ROS software applications and hardware devices which cannot themselves access the online
software facilities and the DC controller which handles the different types of DC applications
and is optimized for the control of computer farms. A version of the latter is also used for the
control and supervision of the high level triggers and is further described in Chapter 12.3.3. The
main difference between the two controllers is that the one which controls ROD crates and the
Read Out System cannot assume that it controls active and intelligent elements. A ROD is a
hardware device on which no standard software application is running: in this case the control-
ler is the only access point to the databases as well as the only element communicating over IS/
MRS to the Online system.

Both controllers can be deployed at different levels of the control hierarchy. As an example, a
Data Collection controller can be used as top controller for all event building applications, as
well as controller for a group of them. In general, such a controller can be in charge of other sub
controllers or of endpoint data taking applications, transparently.

The Data Flow controllers make use of the configuration database to extract the information on
the elements they are supposed to supervise. Their duty is to start, control and stop the data
taking elements (hardware and software), to monitor the correct functioning of the system,
gather operational statistics information and perform local error handling for those kinds of er-
rors which couldn’t be handled by the data taking nodes, but do not need to be propagated fur-
ther to higher control levels.

12.3.3 HLT Farm Supervision

The emphasis for HLT control is on the management of the Computer farms. It is assumed that
the farm for a HLT is divided into a set of subfarms, each under control of a specific controller.
These controllers have well defined tasks in the control for the underlying processing tasks.

The High Level Triggers (HLT) perform the final selection before sending events to permanent
storage. They consist of the 2nd Level Trigger (LVL2) and the Event Filter (EF). The two stages
of the HLT are implemented on processor farms, divided into a number of subfarms. A key de-
sign principle has been to make the boundary between LVL2 and EF as flexible as possible in or-
der to allow the system to be adapted easily to changes in the running environment (luminosity,
background conditions, etc.) Therefore commonalities between the two sub-systems need to be
exploited as fully as possible. Bearing this in mind, a joint control and supervision system has
been envisaged.

The Online Software configuration database will describe the HLT in terms of the software
processes and hardware (processing nodes) of which it is comprised. The HLT supervision and
control system will use the configuration database to determine which processes need to be
started on which hardware and subsequently monitored and controlled. It is foreseen that the
smallest set of HLT elements which can be configured and controlled independently from the
rest of the TDAQ system (i.e. a "segment") will be the subfarm. This allows subfarms to be dy-
namically included/excluded from partitions during data-taking without stopping the "run".
Supervision and control for each subfarm will be provided as a local run controller, which will
interface to the Online Software run control via a farm controller. The controller will provide
process management and monitoring facilities within the subfarm. The controller will maintain
the sub-farm in the best achievable state by taking appropriate actions, e.g. restarting crashed
processes.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

12 Experiment Control 189

Where possible, errors should be handled internally within the HLT processes. Only when they
cannot be handled internally should errors be sent to the supervision and control system for
further consideration.

It is foreseen that Online Software services will be used by the supervision system for monitor-
ing purposes. For example, IS will be used to store state and statistical information which could
be displayed (for example) by a dedicated panel in the Online Software graphical user interface.

12.3.4 Detector control

In order to provided all the functionality required for Physics and calibration runs, the DCS sys-
tem must provide the flexibility to model the partitioning schema of the DAQ system. The finest
granularity of the DAQ system, is given by segmentation of the sub-detectors in TTC zones. For
these reasons, the different sections of the sub-detectors will be logically represented in the BE
software of the DCS by means of the so-called control units, which will be operated as FSM. Ac-
cording to this model, the DCS of the Tilecal, for example, may be organized in four independ-
ent control units, which would control the four sub-detector sections. The control units will be
hierarchically organized in a tree-like structure to reproduce the organization of the experiment
in sub-detectors, DCS system and sub-systems as illustrated in Figure 12-3.

Each control unit may control a sub-tree below consisting of other control units or device units,
which are responsible for the monitoring and control of the equipment.

In order to map the dynamic structure of the DAQ system, the control units will support differ-
ent partitioning modes. Any control unit may be excluded from the hierarchy and operate in
stand-alone mode for testing, calibrations or debugging of part of the system. The different
modes of operation of the DCS, which allow for stand-alone or integrated mode with the DAQ
system, will require the implementation to handle the ownership of the different control units.
This mechanism will be developed according to the recommendations of the JCOP Architecture
Working Group [12-1].

Figure 12-3 DCS Logical Architecture.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

190 12 Experiment Control

12.4 Control Scenarios

12.4.1 Initialisation, Data-taking and Shutdown Phase

Pre-conditions, DCS state, state of external systems

The data-taking states as described in Chapter 12.2 are traversed when the system is run
through initialisation, data-taking and shutdown phases. When initiating a data-taking session,
operation starts from booted but idle machines. The Operator chooses the configuration to be
used. The infrastructure consisting of a number of servers in the distributed system is started.
Initialisation of the infrastructure hardware and software is performed and the correct function-
ing of the system is verified. Sequence and synchronisation of these start-up operations follows
the dependencies described in the configuration database Section 10.4.1.1. The communication
services are provided via the Online Software Information sharing services and allow for infor-
mation and message exchange as well as for monitoring and histogramming. Once the infra-
structure is in place, the controller processes and the application processes which are part of the
configuration are booted. In the distributed system, process management and synchronisation
is de-centralized and can therefore occur in parallel.

Once all processes have been booted successfully the operator can cycle the system through the
states which are used to synchronize the configuring of hardware equipment and software ap-
plication which take part in the data-taking process. During the loading transition, the initialisa-
tion of all the processing elements in the system including for example the loading of the
software and configuration data is performed. During the following transition, called configur-
ing, the configuration of a loaded system, for example the realisation of connections between
TDAQ elements or the setting of parameters, is preformed.

When these operations are terminated, the system is in a state ready to take data. The opera-
tions described up to here may be time-consuming and can therefore be performed a significant
time before starting the run, for example when waiting for stable run conditions.

The operator can now give the signal to start a run via the graphical user interface to the system.
The L1 busy is removed and event data-taking operations are activated. If found necessary, a
run can be paused and resumed later in an orderly manner. The transitions involved should
only concern the direct data-taking activity to minimize time overhead. On the occurrence of
special conditions [ref] the checkpoint transition as described in [ref] can lead to a change in run
number.

It could be described here what can happen here while running,; parts of it is described in Chapter 12.4.2,
"Control of a Physics Run" at the moment:

• partition de-coupling

• partition joining

• sub-farm removal, sub-farm joining

• component failures and error handling [ref to chap.3 and 6]

When the operator stops the run, all data-taking activities are stopped. The involved control
and application processes remain active. (describe actions in DF, HLT, L1 for unload - unconfigure).
On receipt of the shut-down command, clean-up operations are performed by the software ap-
plication and in the hardware and the controllers and the previously started applications are

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

12 Experiment Control 191

stopped. Then the infrastructure is removed in an orderly manner in order to leave the system
in a state in which a new and independent data-taking session can be started.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

192 12 Experiment Control

12.4.2 Control of a Physics Run

remark: here the terms sub-detector and sub-sub-detector are used, this can be changed to whatever terms
for those items will be decided to be used for the TDR.

The overall control system must ensure the safe and coherent operation of all sub-detectors in
an integrated mode for concurrent physics data-taking. The online control system, which han-
dles the control of all the read-out elements in the system and the DCS which controls the detec-
tor hardware, are synchronized by means of commands issued from the TDAQ system to the
DCS. The interface between DAQ and DCS, called DDC, has been described in detail in 11.8 . It
consists of three aspects. Dedicated communication interfaces for data exchange, presented in
section 11.8.1 and for message exchange, described in section 11.8.2 are available. During all
data-taking phases, bi-directional data and message exchange between both systems may take
place from any level of the DCS BE to the Online software information sharing and message re-
porting services. The command communication between TDAQ and DCS is provided via a ded-
icated controller called DDC_CT, which has been introduced in section 11.8.3

The TDAQ will be the master system and will drive the data-taking. Figure 12-2 shows the or-
ganization of the Back-End (BE) system of the DCS and the TDAQ hierarchy of controllers pre-
sented in Section 12.3.1. For Physics data-taking, all TDAQ controllers will be integrated in a
single common partition.

It is envisaged to have one DDC_CT controller per sub-detector. This controllers will send commands

Figure 12-4 Complete Experiment Control mode. Figure to be changed. DCS part should show a logical organ-
ization

TDAQTDAQ

Complete Experiment ControlComplete Experiment Control

TilecalTilecal

EB-EB- B-B- B+B+ EB+EB+

CoolingCooling LVLV HVHV SAloneSAlone

…… ……CICCIC Det1Det1

MagnetMagnet

LHCLHC

CERNCERN

TilecalTilecal

EB-EB- B-B- B+B+ EB+EB+

ROSsROSs ROSsROSs ROSsROSs ROSsROSs

…… L1L1Det1Det1

ATLASATLAS

DDC-CTDDC-CT

DCDC

DSSDSS

ATLASATLAS

DCS_ISDCS_IS

DCSDCS
Example for TileCAL

RODsRODs RODsRODs RODsRODs RODsRODs

EFEF

L2L2

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

12 Experiment Control 193

directly to the Subdetector Control Stations (SCS) on the DCS side. No command flow is fore-
seen from the TDAQ system and the DCS global operation station. The DCS SCS are directly
connected to the sub-detector services underneath as well as to the external systems by means
of the DCS Information Server (DCS_IS). All information required to operate the detector is
available at the SCS level. For these reasons, the SCS will have local decision capabilities. There-
fore, the SCS represent the natural place to validate and execute commands issued by the
TDAQ system, since they can cross-check the status of the different systems to ensure the safe
operation of the detector.

This communication model implies that the TDAQ system will interact directly with the DCS
FSM of the various sub-detectors. The availability of each of the partitions of the sub-detector
for Physics data-taking will be notified to the TDAQ system from the SCS by means of the mes-
sage transfer facility of the DDC.

Only a pre-defined set of high-level commands from the TDAQ system like the triggering of
state transitions on the DCS side will be allowed. The interpretation and execution of the com-
mands is the entire responsibility of the DCS, since the TDAQ system will not have the knowl-
edge of the underlying structure of the DCS. The state of the command execution on the DCS
side will be reported to the TDAQ system directly by means of the DDC_CT. The TDAQ Online
software control system handles failures or time-outs from the DDC_CT in the same way as
from other controllers in the system.

The TDAQ system control operates according to the hierarchical Online Software Control con-
cept as further described in Section 12.3.1. As illustrated in Figure 12-4, the detector controllers,
the farm control for EF and L2 as described in Section 12.3.3, and the DC controller operate at
the same level in the hierarchy. Each detector controller supervises the sub-detector controllers
and the controller which provides the detector connection to DCS. ROSs and RODs are super-
vised by the respective sub-detector controller. Global error handling and recovery is provided
by the Online system control.

In case of malfunctioning of a detector or sub-detector, the respective partition can be removed
from the control and read-out partition tree. The global partition control will continue to super-
vise the read-out if the detector part in question is not vital for data-taking for the type of phys-
ics chosen at the time. It can run in stand-alone mode to allow detector experts to repair
eventual problems and join later the global control partitions and its read-out chain.

HLT sub-farms can be removed or added to the global farm control without disturbance of
data-taking actions. Breakdown and replacements of individual sub-farm nodes will be han-
dled transparently and each of such operations will be logged.

this may have to be expanded in more detail

12.4.3 Calibration Run

the different types of calibration runs will be described similar to the description of the physics run

• Three different type of calibration runs: Pure TDAQ, for example test pulses for LA calibration,
pure DCS (calibration of the temperature sensors, adjustment of the cooling flow depending on the
temperature) or both systems are involved, for instance the case of the calibration of the Tile Calo-
rimeter using the Cs source.

• Shall we refer to only the third case in this section? My personal impression is yes.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

194 12 Experiment Control

• In all calibration where both systems are required, the TDAQ system will be the master of the proc-
ess.

• The picture shows the case in which the Tilecal detector is operated in stand-alone mode for calibra-
tion where both systems are involved.

• The DCS will execute the commands issued from the TDAQ by means of the DDC_CT.

• case stand-alone of sub-sub-detector, also more than one in parallel

12.4.4 Operation outside a Run

During shut-down periods and long term intervals without data-taking, the full functionality of
the DCS will be required in order to supervise the operation of the sub-detectors and common
services. In this situation, the DCS becomes the master of the detector. In order to reduce the
cost, the operation high power consumption equipment or the circulation of expensive gases in
the sub-detectors will be interrupted in these periods. However some sub-detector services like
the LAr and ID cryogenics, will continue to be operated during these periods. The monitoring
and control of the humidity and temperature of the electronics racks, the supervision of the un-
interruptible power supply system and of other sub-detector specific equipment will be re-
quired in order to enable a safe operation. For these reasons, the access of the DCS to the condi-
tions and the configuration databases must also be ensured outside a run. During these periods,
the DCS will also handle the communication with the external systems. The ATLAS magnet will
be permanently switched on and therefore, the interface with the DCS must be continuously
available. The radiation levels monitored by the LHC control system must be accessible by the

Figure 12-5 Detector Stand-alone mode. Figure to be changed. DCS part should show a logical organization

TDAQTDAQ

Detector StandDetector Stand--alone Modealone Mode

TilecalTilecal

EB-EB- B-B- B+B+ EB+EB+

CoolingCooling LVLV HVHV SAloneSAlone

CICCIC

MagnetMagnet

LHCLHC

CERNCERN

TilecalTilecal

EB-EB- B-B- B+B+ EB+EB+

DDC-CTDDC-CT

DSSDSS

DCS_ISDCS_IS

TileRootTileRoot

DCSDCS

L1L1

Example forExample for TileCALTileCAL

ROSsROSs ROSsROSs ROSsROSs ROSsROSs

RODsRODs RODsRODs RODsRODs RODsRODs

DCDCEFEF

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

12 Experiment Control 195

DCS at all times. The DSS will be able to trigger actions on the DCS in case of problems under
these circumstances. Similarly, the interface to the fire brigade and to the access security system
must be continuously operational.

In this scenario, the DCS will allow for the operation of the sub-detector in stand-alone mode, as
required for debugging of the system or calibrations, and in an integrated mode. In the former
case, the operation will be performed from the sub-detectors control stations having full control
of the sub-detector, whereas in the latter, the overall control will be performed from the global
operation station and only a subset of high level actions will be possible on the sub-detectors as
the triggering of transitions between sub-detector states.

12.5 References

12-1 JCOOP Architecture Document

12-2 LHC Operations project: http://lhcop.web.cern.ch/lhcop/

12-3 Runs and States - Global issues working group document: http://atlas-project-tdaq-
giwg.web.cern.ch/atlas-project-tdaq-giwg/Documents/Documents.htm

12-4 Partitioning - Global issues working group document: http://atlas-project-tdaq-
giwg.web.cern.ch/atlas-project-tdaq-giwg/Documents/Documents.htm

12-5 The SCADA system...

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

196 12 Experiment Control

Part 3

System Performance

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

13 Physics selection and HLT performance 199

13 Physics selection and HLT performance

13.1 Introduction

In the Technical Proposal for the HLT, DAQ and DCS of the ATLAS experiment, a first understanding of
the on-line event selection scheme and the corresponding physics coverage was made. Since then, the
studies have evolved, to cope with different machine scenarios and additional constraints coming from
the detector itself. One of the major changes to take into account has been the LHC start-up phase, cur-
rently foreseen to deliver 10 fb-1 in one year, with a peak luminosity per fill of L = 2.0 × 1033 cm−2s−1, a
factor of two with respect to the Technical Proposal assumptions. This change has motivated a complete
revisiting of the approach to the Physics and Event Selection Architecture of the experiment, leading to a
novel way of reducing event rates and sizes, while retaining as much as possible of the ATLAS physics
goals. Needless to say, only the availability of real data will allow this proposal to find a concrete imple-
mentation and the tuning of the relative weights of the selection will only be possible then, when con-
fronted with the environment of LHC data taking.

As it has been explained in Chapter 9, the High Level Trigger system of the experiment is composed of
two separate data reduction steps, the Level-2 (LVL2) and the Event Filter (EF), each of them with dis-
tinctive and complementary features. The common denominator of these selections is that they will oper-
ate using software algorithms running on commercial computers to validate the hypotheses of particle
identification. The LVL2 will do this with purpose built algorithms that need to operate in about 10 ms
and use only part of the detector information at full granularity, the EF will have the fully built event at
disposal, with a latency of the order of a second. An important aspect is to maintain a flexible scheme al-
lowing for an easy adaptation to changes in conditions like luminosity or background: the modularity of
the HLT will allow the implementation of different reduction steps at different stages.

Given these commonalities and these distinctions, it has been recognized that a coherent and organized
approach to the software components of the trigger validation was needed to make a fundamental step
forward with respect to the TP. The work that will be presented in Section 13.2 has concentrated on this
issue, by deriving the common tools for the event selection and identifying the data model components
and methods that can be shared across the different algorithms, in particular at LVL2. This will ease the
implementation of different selection schemes, by making as well simpler the migration across levels.

Another important focus point for new developments has been the compliance with the updated detector
geometry and with the realistic format of the data coming from the Read Out System. This implies that al-
gorithms will operate on streams of bytes organized according to the read-out structure of each detector,
in exactly the same way in which they will in the real experiment. This has allowed to study and under-
stand the implication of converting those byte-streams to the objects needed by algorithms in order to per-
form trigger selections as well as making preliminary measurements of the overheads stemming from
these conversions.

In Section 13.3 the outcome of present studies are presented. Particular emphasis has been put on the se-
lection of electrons and photons, and on the one of muons. For those “vertical slices” of event selections,
a thorough implementation of the approach described above has been attempted. After LVL1 validation,
data organized according to the read-out format are used by LVL2 algorithms, operating within the frame-
work of the PESA Steering and Control (refPESA). Trigger elements are then built using detector infor-
mation and verified against hypotheses of particle identification. If LVL2 validation is successful, the EF
reconstruction and analysis is performed (seeded or not by the LVL2 result) and the final selection pub-

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

200 13 Physics selection and HLT performance

lished for off-line use. Rejection against dominant backgrounds and efficiencies for typical signals are re-
ported, as well as the rates deriving from each of the selections.

To fully span the ATLAS physics coverage, also signatures involving jets, taus, ETmiss, as well as jets
with b-quark content have been studied, and results are reported in the same section. As described in
Chapter 4, the available on-line resources will also be used, for luminosities below the peak one, to eval-
uate b-production cross-section and make precision measurements with B-hadrons.

The global assessment, based on the present evaluation for each signature, of the ATLAS rates to off-line
is made in Section 13.4, together with a preliminary description on how to reduce further the data volume
by applying compression techniques or zero suppression to the detector information. A sketch of issues
related to the initial phase of the experiment seen from the selection architecture point of view is also giv-
en in Section 13.5.

13.2 Common tools for selection

The basic software components which provide data to derive the trigger decision are the HLT algorithms.
These algorithms operate within the context and environment of the PESA Core Software which is dis-
cussed from a conceptual design and architectural standpoint in Chapter 9 provides an overview and de-
scription from the viewpoint of HLT algorithms. HLT algorithms manipulate and exchange data via
objects of a common Event Data Model described in Section [Ref: sect:edm]. Furthermore, algorithms
rely as much as possible upon common tool components which are discussed in Section [Ref: sect:tools].
An inventory of HLT algorithms intended to operate in the LVL2 environment is given in Section [Ref:
sect:lvl2]; the inventory for EF algorithms is given in Section [Ref: sect:ef].

13.2.1 Algorithmic View of the Core Software Framework

HLT algorithms must allow themselves to be guided by the PESA Steering, to be seeded by Trigger Ele-
ments, and to operate with a restricted set of event data.

The Trigger processing starts from a LVL1 RoI using predefined Sequences of algorithms. These LVL1
RoI objects are decorated by Trigger Elements to allow them to be acted upon by the Steering. For each of
these Trigger Elements, the Steering executes the required algorithms as defined in a Sequence Table.
Hence, it is possible that a given algorithm may be executed N times per event. This is fundamentally dif-
ferent than the "Event Loop" approach of the Offline reconstruction paradigm where a given Offline algo-
rithm would act only once upon each event.

To accomplish the Steering of algorithms using Sequence Tables and Trigger Elements, a Seeded ap-
proach is required. Trigger Elements characterizing abstract physics objects have a label (e.g., "electrons"
or "jets") and effectively decouple the Steering and Physics Selection from details of the Event Data Mod-
el used by the algorithms. Via the Navigation scheme within the PESA Core Software environment, algo-
rithms may obtain concrete event data associated with a given Trigger Element which define the Seed of
restricted and relevant event data fragments upon which they should work. Again, this is different than
the data access paradigm of the Offline environment where a given Offline algorithm would have poten-
tially full access to event data.

At LVL2, event data reside within ROBs until actively requested. This allows the LVL2 algorithms to re-
quest and process only a small fraction of event data from ROBs, representing a substantial reduction in
the network and computation resources required. The first step in this process is the conversion of a geo-

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

13 Physics selection and HLT performance 201

metrical region (e.g., a cone with an extent η and φ) into Identifiers; this is accomplished with the HLT
RegionSelector.

The HLT RegionSelector translates geometrical regions within the fiducial volume of the detector into a
set of Identifiers. Presently these Identifiers are IdentifierHashes corresponding to elements of ap-
propriate granularity in each sub-detector, usually a DetectorElement. As such, the RegionSelector uses
DetectorDescription information during its initialization phase to build an EtaPhiMap for each layer (or
disk) of a subdetector. This map is essentially a two-dimensional matrix in η and φ. Each element consists
of a list of IdentifierHash; the column indices are φ floating point numbers while a range (ηmin,
ηmax) specifies row indices. The input to RegionSelector API is the sub-detector under consideration (i.e.,
Pixel, SCT, TRT, LAr, Tile, MDT, RPC, CSC, or TGC) and the extent of the geometrical region. Given
the vastly different designs of each subdetector, a subdetector-dependent procedure is used. With knowl-
edge of the layers and/or disks in the region, the RegionSelector searches the φ →IdentifierHash
map which will give a set of IdentifierHash is relevant in φ region. The last step is to validate each
IdentifierHash inside the IdentifierHash→ (ηmin, ηmax) map.

Interactions with the Data Collection system are hidden from the Algorithm behind a call to StoreGate.
Within StoreGate, event data are aggregated into collections within an IdentifiableContainer (IDC) and
labelled with an Identifier. Algorithms request event data from StoreGate using the set of Identifiers ob-
tained by the HLT RegionSelector. If the collections are already within StoreGate, it returns them to the
HLT algorithm. If not, StoreGate uses the IOpaqueAddress to determine which ROBs hold the relevant
event data and requests it from the Data Collection system. A ByteStream converter converts the Raw
Data into either Raw Data Objects (RDOs) or, by invoking a DataPreparation AlgTool, into Recontruc-
tion Input Objects (RIOs). The obtained RDOs or RIOs are stored within the collections within the IDC
within StoreGate.

13.2.2 Event Data Model Components

During 2002 and 2003, there has been a substantial ongoing effort within the HLT, Offline, and subdetec-
tor communities. The goal of this effort has involved the establishment of a common EDM between HLT
and Offline software in the areas of the raw and reconstruction data models. In the discussion that fol-
lows, the concept of a DetectorElement is used as an organizing and identifying principle for event data
model objects; these are discussed in Section [Ref: sect:DE]. Currently, there has been convergence with
respect to the raw data model described in Section [Ref: sect:rawedm]. Common reconstruction data
model classes specific to LVL2 and EF algorithms have been developed and are described in Sections
[Ref: sect:recedm] and [Ref: sect:ropo].

13.2.2.1 Event Data Organization

Event Data (e.g., Raw Data Objects (RDOs) and Reconstruction Input Objects (RIOs)) are aggregated
into collections corresponding to adjacent readout channels within the physical detector. These collec-
tions reside in an IdentifiableContainer (IDC) with Identifier labels corresponding to the unit of aggrega-
tion. For most sub-detectors, the organizing principle is that of the DetectorElement.

In the Pixel detector a DetectorElement is a module, equivalent to a single Silicon wafer; hence there are
1744 Pixel DetectorElements. For the SCT, a DetectorElement is one side of a module, equivalent to a
bonded pair of wafers whose strips are oriented in a single direction (i.e., axial or stereo); there are 8176
SCT DetectorElements. For the TRT, a DetectorElement is a planar set of straw tubes representing one
row at a given radius of straws in a barrel module (i.e., a plane corresponding to the tangential direction in

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

202 13 Physics selection and HLT performance

the barrel) and 1/32 in rφ at a given z of straws in an end-cap wheel (ref:idedm) there are 19008 TRT De-
tectorElements.

For the calorimeters, the concept of DetectorElement does not exist (but it should). Instead, the organiz-
ing principle for event data is that of the Trigger Tower.

Within the muon spectrometer, for the MDTs, a DetectorElement is a single MDT chamber, where there is
at most a single MDT chamber per station, and typically, an MDT chamber has two multilayers. An RPC
DetectorElement is the RPC components associated to exactly one barrel muon station; there may be 0, 1
or 2 RPC doublet sets per station and a doublet set may comprise 1, 2 or 4 RPC doublets. A TGC Detec-
torElement is one TGC eta division, or chamber, in a TGC station; there are 24 forward stations in a ring
and 48 endcap stations in a ring and there are four rings at each end of the ATLAS detector. Finally, for a
CSC DetectorElement is a single CSC chamber, where there is at most a single CSC chamber per station.
And typically, a CSC chamber has two multilayers.

13.2.2.2 Raw Data Model Components

This subsection summarizes aspects of ByteStream Raw Data, Raw Data Objects (RDOs), and Converters
between the two for each sub-detector.

ByteStream Raw Data is Read-Out Buffer (ROB)-formatted data produced by the ATLAS detector or its
simulation. It is defined by a set of hierarchical fragments, where only the bottom level, the ROD frag-
ment, is defined by the sub-detector group. The format of the ByteStream has not yet been formally de-
fined. Hence, preliminary “best guesses” have been made as to its structure which may undergo changes
in the future.

A Raw Data Object (RDO) is uncalibrated Raw Data converted into an object representing a set of read-
out channels. Historically this has been referred to as a Digit. It is the representation of Raw Data which is
put into the Transient Event Store (TES) and could potentially be made persistent.

The purpose of the RDO converters is dual: first a Raw Data ByteStream file can be created by taking the
information from the already filled RDOs (in the transient store, from ZEBRA); second, this ByteStream
file can then be read back by the converters to fill the RDOs (or the RIOs for LVL2). Since the RDOs are
a representation of the specific detector output, its content can change with the life time of the sub-detec-
tors.

13.2.2.2.1 Inner Detector

The content of the ROD fragment for the Pixel, SCT, and TRT detectors is given in Table [Ref: tab:InDe-
tROD].

The implementation of the RDOs for the Inner Detector is based on a design reflective of the possibility
that the content of RDOs may evolve in time. Hence there is the possibility of having several concrete
classes of RDOs. The access to the content of the word that constitutes the raw information is done
through member function that apply the right bit field masks to the word. Finally, the implementation of
the RDOs makes use of the IdentifiableContainer (IDC) base class for a quick access to the stored collec-
tions, which, for the Inner Detector, has a granularity corresponding to DetectorElements in each sub-de-
tector.

[Descriptive text about Pixel Raw Data goes here. Need input from Marina Cobal, Lorenzo Santi, et al.]

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

13 Physics selection and HLT performance 203

[Descriptive text about SCT Raw Data goes here. Need input from Jochen Schieck et al.]

The TRT readout and resulting Raw Data format is complicated due to its dual purpose as a tracking and
particle identification detector and the nature of reading out a wire/straw detector. The TRT ByteStream
consists of data collected in a 75ns window following the start of and LHC bunch-crossing which gener-
ates a LVL1 accept. Hence, the readout period is three times the nominal 25ns time-slice separation be-
tween LHC beam crossings. Two species of readout data exist: a tracking output using a 200eV
discriminator threshold (referred to as Low Threshold) and a particle identification output using a 5000eV
discriminator threshold (referred to as High Threshold). In recording the low threshold signal, eight bits
for each of three consecutive time-slices are used. Each 25ns time-slice is divided into eight 3.125ns wide
bins. A bit is set to one if the low threshold discriminator was on during the corresponding time bin. This
leads to 24 bits being used to record the low threshold data. In recording the high threshold signal one bit
for each time-slice is used. The bit is set to one if the high threshold discriminator was on at any time dur-
ing the time-slice. This leads to a total 3 bits being used to record the high threshold data. The resulting
set of 27 bits is referred to as "full encoding" and contains data for three time-slices with the earliest data
occupying the highest order bits.

13.2.2.2.2 Calorimeters

The content of the LAr and Tile Calorimeter ROD fragments is given in Table [Ref: tab:rodcal].

For the LAr calorimeter, the current mapping is that all front-end boards (FEBs) in one Feedthrough is put
into one ROD. The LAr RDO, LArRawChannels, are stored in LArRawChannelCollection.
These collections can be accessed through LArRawChannelContainer, a subclass of Identifia-
bleContainer. Currently, the LArRawChannels in a LArRawCollection is ordered according
to temporary definition of LAr Trigger Tower (TT) Identifier as defined in LArIdentifier package.
This provides access to RoIs expressed as a group of TT. To access all LArRawChannels in a RoI, the
user can use the selector class, LArTT_Selector in LArRawUtils package, given a LAr-
RawChannelContainer, and a vector of TT Identifiers.

Even though in the standard Offline data model LArCells are stored in CaloCellContainer in
granularity of subdetectors (i.e., EM, HEC, FCAL), a special Collection/Container similar to that for
LArRawChannels is provided for LVL2 algorithms since it is desirable to create LArCell directly
from ByteStream for efficiency reasons. The calibration of LArCells, normally applied by algorithms in
LArCellRec packages, have to be applied. This is achieved by defining a LArCellCorrection
base class, a subclass of AlgTool, in LArRecUtils package, and the converter will retrieve a set of
these AlgTools from ToolSvc to apply the corrections to the LArCells. This guarrantees the LAr-
Cells created by the ByteStream converter is identical to the LArCells created in the offline data
processing sequence.

The granularity of the Tile Calorimeter from readout point of view is the following. There are 4 independ-
ent systems (ROS) which correspond to 2 halves of barrel and 2 extended barrels. Every such a cylinder
contains 64 modules (or half-modules in case of barrel) and output from every 8 modules goes into one
ROD unit. Therefore one ROD fragment contains 8 sub-fragments which correspond to 8 modules. Also,
there is a possibility to have different kind of sub-fragments, for example sub-fragment with raw digits
(25ns time slices) and sub-fragment with reconstructed quantities like energy, time, quality. There is no
limit on total number of sub-fragments in one Tile ROD fragment: they are put one after another and iden-
tified by 32-bit words. Upper half of this word is fragment type and lower half is fragment ID The frag-
ment ID itself can be split into 2 parts: 8 bits ROS number (range 1-4) and 8 bits module number (range 0-
63). For the moment only one type of sub-fragment is implemented, namely sub-fragment which contains
amplitude, time and quality. All these values are member elements of TileRawChannel. The ampli-

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

204 13 Physics selection and HLT performance

tude in TileRawChannel is expressed in ADC counts (10 bits range), time is in nanoseconds and qual-
ity is the number in the range 0-1. Although it might not be necessary, all variables are treated and signed.
The content of the this fragment is given in Table [Ref: tab:rodcal].

As is the case for the LAr Calorimeter, a special Collection/Container similar to that for TileR-
awChannels is provided for LVL2 algorithms since it is desirable to create TileCell directly from
ByteStream for efficiency reasons. The calibration of TileCells, normally applied by TileR-
awChannelToCell algorithm in TileRecAlg package, have to be applied. A temporary solution for
calibration is to hold all calibration constants in the TileInfo class. TileInfo is stored in TDS and
then retrieved by any algorithm when needed. Both TileRawChannelToCell and
TileROD_Decoder are using the same constants from TileInfo class This guarantees the Tile-
Cells created by the ByteStream converter is identical to the TileCells created in the offline data
processing sequence.

13.2.2.2.3 Muon Spectrometer

The definition of RDOs for the RPC is complicated by the way the RPC read-out is organized. The RPCs
are trigger chambers, and the organization of their read-out is oriented toward this task: the read-out struc-
ture does not reflect any easily identifiable geometrical structure, like for example, a single RPC chamber
with its strips.

The primary task of the RPC trigger chambers is to record hits in the pivot plane (i.e., the middle one of
the three RPC planes) that coincide in time either with hits in the RPC plane closest to the Interaction Re-
gion (“confirm plane low pT”) or with hits in the RPC plane farthest from the Interaction Region (“con-
firm plane high pT”). The RPC strips are read out via coincidence matrices (CMs). The η strips of the
pivot plane and the η strips of the low pT (high pT) confirm plane are connected to the low pT (high pT)
CMs and likewise for the φ strips. The CMs are grouped together in PADs. Each PAD reads out all coinci-
dences between RPC planes in a 3-dimensional volume. Neighbouring PADs overlap in η on the two con-
firm planes but not on the pivot plane. There, a PAD covers half a RPC chamber. Per logical sector, there
can be up to 8 PADs. The cabling of the RPC strips to the CMs is such that one CM reads out either the η
or the φ strips in half a PAD. Consequently, one PAD reads out two low pT η CMs, two low pT φ CMs,
two high pT η CMs and two high pT φ CMs.

The RPC ByteStream format reflects the read-out subdivision in PADs that are subdivided in CMs that
read-out fired CM channels. Note that there is no simple one-to-one correspondence between RPC strips
and CM channels. In order to determine which RPC strip fired given which channel fired in a, say, low pT
η CM, a cable map and the information in the high pT φ CM of the same PAD is needed. The latter infor-
mation is necessary to resolve the ambiguities caused by the fact that more than one RPC strip can be con-
nected to the same CM read-out channel.

There will be three different types of RPC RDOs:

1. Bare RDOs;

2. RDOs with prepared data, first variety;

3. RDOs with prepared data, second variety (“digits”).

The bare RDOs are the minimal object representation of the information contained in the bytestream.
Three classes are used: RpcPad, RpcCoinMatrix, and RpcFiredChannel.

RpcPad is a DataVector of RpcCoinMatrix which, in turn, is a DataVector of RpcFired-
Channel. RpcFiredChannel contains the online identifiers of the CM channels (not the RPC strips)

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

13 Physics selection and HLT performance 205

that fired. Objects of type RpcPad are the collections that are stored in an IDC. An object of type Rpc-
Pad is the smallest unit of information a HLT algorithm can retrieve from StoreGate with a single re-
quest. Accordingly, an object of type RpcPad is uniquely identified by means of an Offline Identifier as
defined in Ref. cite{ref:rpc2}. These Offline Identifiers follow the geometrical RPC structure, not the
read-out structure. Since the projections of the PADs onto the pivot plane do not overlap, the location
where the PAD intercepts the pivot plane can be identified uniquely with an Offline Identifier and is used
to identify an object of type RpcPad.

The class hierarchy in the first variety of the RDOs with prepared data is identical to the one in the bare
RDOs. The only difference is that RpcFiredChannel contains the information which RPC strips fired
(their Offline Identifier). To arrive at the RPC strip that fired access to the cable map (i.e., to information
external to the ByteStream), is needed. The HLT algorithm muFast will make use mainly of this type of
RDOs.

The second variety of RDOs with prepared data corresponds to RPC digits and are used by EF algorithms
like Moore.

[Need text for MDTs here, I will contact Monika G. and Ketevi.]

13.2.2.3 Reconstruction Data Model Components

RIOs are the most upstream objects that algorithms typically interact with (as opposed to RDOs or RodIn-
putDigits).

13.2.2.3.1 Inner Detector

Similar to the RDOs, the implementation of the RIOs makes use of the IdentifiableContainer
base class, and the collections are also according to the granularity of DetectorElements.

The Pixel and SCT RIOs are Clusters. A Cluster in the Pixel detector is a two-dimensional group of
neighbouring readout channels in a DetectorElement. A Cluster in the SCT is a one-dimensional group of
neighbouring readout channels in a Detector Element. For Pixel and SCT, there are currently two imple-
mentations of the Cluster class: one used for EF and Offline and one used for LVL2. The one used at EF
has Pixel and SCT sharing the same class. For LVL2 there is a common structure for Pixel, SCT and TRT,
but they all have their own concrete classes. For Pixel and SCT there is a base class used for LVL2. There
is also an Extended class which could potentially be used at EF (which inherits from the LVL2 base class)
in the future. Both LVL2 and EF set of cluster classes contain a list of RDO identifiers from which the
cluster is built. The number of member functions is limited in both set of classes and the member func-
tions follow the InnerDetector Requirements cite{ref:idedm}. It is assumed that in the future there will be
only one set of RIO classes to be used for LVL2, EF, and Offline.

The TRT RIO is the drift circle of a straw. In the case of the TRT, the same classes are used for LVL2, EF,
and Offline: those classes are the DriftCircle classes part of the set of classes that are also used at
LVL2 for Pixel and SCT. The granularity of the TRT RIO is the same as for the RDO: that of a straw, thus
the RIO contains an identifier which is the offline identifier for a straw. In the case of the RDO the straw
information is uncalibrated and is just the direct content of the detector output, while in the case of the
RIO the straw information is calibrated: out of the drift time, a drift radius is obtained. For now, the drift
function applied is the same for all straws. In the future the constants that go into the parametrization of
this drift function will come from the Interval of Validity Service cite{ref:IoVS.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

206 13 Physics selection and HLT performance

13.2.2.3.2 Calorimeters

For the Calorimeters, the RIOs are calibrated calorimeter cells (LArCells and TileCells), imported
from the offline reconstruction.

Both LArCells and TileCells have CaloCell as a common base class which represents the basic
nature of a observation in the ATLAS calorimeters an energy, position, time and quality. A CaloCell
has been calibrated so that energy() returns the physical energy deposit in the cell with units of GeV,
but without any kind of leakage corrections. Time represents when the feature extraction thinks the de-
posit occurred, in nanoseconds, relative to the trigger. It ought to be zero for good hits. Quality reflects
how well the input to the feature extraction system matched the signal model on which the feature extrac-
tion algorithm is based. It is a number, from zero to 1, giving the significance of the hypothesis that the
actual signal is a sampling of the signal model (i.e., it is the integral of a probability distribution from -\inf
up to an observed value of a test statistic and ought to be uniformly distributed from [0,1] if the hypothe-
sis is correct).

A UML class diagram of LArCell and TileCell is given in Figure [Ref: fig:caluml].

13.2.2.3.3 Muon Spectrometer

[Need text here.]

13.2.2.4 Reconstruction Output

13.2.2.4.1 Tracks

A track is, in general, an object containing a parametrization of a hypothesized particle trajectory through
space relating groups of RIOs and/or SpacePoints together. A Track trajectory consists of three position,
two direction, and one curvature [Footnote: The use of curvature assumes a homogenous magnetic field
in which case this quantity is constant. For ATLAS and its significantly inhomogenous magnetic field in
the endcap region of the Inner Detector and in the Muon Spectrometer, this parameter may be replaced by
an invariant quantity such as charge/p.] parameters. If a track is evaluated at an intersecting surface, there
are five parameters and a covariance matrix.

A proposed uniform Track class exists for LVL2 algorithms, the TrigInDetTrack class. A UML class
diagram of TrigInDetTrack and associated classes is shown in Figure [Ref: fig:track]. No such uni-
form Track class yet exists in the Offline environment. [Footnote: There are of course Track classes de-
fined internally within ORPs such as iPatRec and xKalman++.]

13.2.2.4.2 Calorimeter Clusters

[To be written]

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

13 Physics selection and HLT performance 207

13.2.3 Tools for HLT Algorithms

13.2.3.1 SpacePoint Formation

LVL2-specific clusters (i.e., SCT_Cluster and PixelCluster give the position of the Clusters
within the local 1 (2)-dimensional coordinate system of the SCT (Pixel) DetectorElement. These are con-
verted to 3-dimensional coordinates in the ATLAS global coordinate system using the AlgTools
SCT_SpacePointTool and PixelSpacePointTool. These tools accept as input a STL vector
of pointers to Cluster Collections of the appropriate type, SCT_ClusterCollection or Pixel-
ClusterCollection, and return a STL vector of objects of the class TrigSiSpacePoint. A
UML class diagram of the LVL2-specific SpacePoint class TrigSiSpacePoint and associated In-
DetRecInput classes is shown in Figure [Ref: fig:spacepoint]

For the Pixels, the creation of SpacePoints consists of combining the local coordinates of Clusters with
information on the position and orientation of the DetectorElement to give the global coordinates.

The process for the SCT is more complicated since a single SCT detector provides only a one-dimension-
al measurement. However, an SCT module, consisting of two detectors in a stereo-pair, provide 2-dimen-
sional information. One species of SCT DetectorElement, phi-layer, has strips orientated parallel to the
beam axis, the other, u or v layer, is rotated by ± 40mRad with respect to the phi-layer DetectorElements.
The formation of SpacePoints consists of the following steps:

• Associate each phi-layer Cluster Collection [Footnote: There is a Cluster Collection per DetectorE-
lement.] with the corresponding stereo-layer Cluster Collection;

• For each pair of Collections (phi + stereo), take each phi-layer Cluster and search for associated
stereo-layer Clusters. If there is more than one associated stereo layer Cluster, a SpacePoint is
formed for each (in this case one, at most, will be a correct measurement, the others will form
"ghost" points). If no associated stereo-layer hit is found, a point is created from the phi-layer in-
formation alone;

• Calculate the second coordinate (z for the barrel, or R for the end-caps);

• Using information on the position and orientation of the DetectorElement transform to global coor-
dinates.

Note that for the LVL2 SpacePoints some simplifications are made in the interest of speed, as follows:

• No attempt is made to form SpacePoints from Tracks passing close to the edge of a module, where
the corresponding stereo-layer Cluster is in a different module.

• Since the stereo and phi layers are separated by a small distance, the trajectory of the track will in-
fluence the measurement of the second coordinate. Since the trajectory is not known at the time
that SpacePoints are created, there will be a corresponding increase in the uncertainty in the meas-
urement in the second coordinate (R or z).

13.2.3.2 Track Extrapolation

[To be written]

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

208 13 Physics selection and HLT performance

13.2.4 HLT Algorithms for LVL2

13.2.4.1 IDSCAN

IDSCAN is a track reconstruction package for LVL2. It takes as input SpacePoints found in the Pixel and
SCT Detectors. A series of sub-algorithms (ZFinder, HitFilter, GroupCleaner, TrackFit-
ter) then processes these and outputs Tracks and the SpacePoints associated with them.

The ZFinder finds the z-position of the primary interaction vertex. The algorithm puts all hits into nar-
row φ-bins and extrapolates pairs of hits in each bin back to the beam-line, storing the z of intersection in
a histogram. It takes as the z-position the histogram region with the most entries.

The HitFilter finds groups of hits compatible with Tracks from the z position found by ZFinder. It
puts all hits into a histogram binned in φ and η. It then finds clusters of hits within this histogram. It cre-
ates a group of hits if such a cluster has hits in more than a given number of layers.

The group of hits found by HitFilter is used by GroupCleaner which splits groups into Tracks
and removes noise hits from groups. Each triplet of hits forms a potential track for which pT, φ0, and d0
are calculated. It forms groups from these triplets with similar parameters, applying certain quality cuts. It
accepts a track candidate if a group contains enough hits.

Finally, the TrackFitter verifies track candidates and finds the track parameters by using a standard
Kalman-filter-type fitting algorithm adapted from SCTKalman cite{SCTKalman}. It returns a list of Spa-
cePoints on the Track, the Track parameters, and an error matrix.

13.2.4.2 SiTrack

SiTrack is a track reconstruction package for LVL2 which extends and upgrades a previous algorithm
called PixTrig. SiTrack takes Pixel and SCT SpacePoints as input and outputs fitted reconstructed
Tracks, each storing pointers to the SpacePoints used to build it. SiTrack is implemented as a single
main algorithm SiTrack which instances and executes a user defined list of sub-algorithms (chosen
among STSpacePointSorting, STMuonVertex, STTrackSeeding, and STThreePoint-
Fit).

STSpacePointSorting collects pointers to SpacePoints coming from the Pixel and SCT detec-
tors and sorts them by module address, storing the result in a Standard Template Library (STL) map. This
processing step is performed in order to speed-up data access for the other reconstruction sub-algorithms.

STMuonVertex is a primary vertex identification algorithm mostly suitable for low luminosity events
with an high pT muon signature. It is based on track reconstruction inside the LVL1 muon RoI: the most
impulsive track is assumed to be the muon candidate and its z impact parameter is taken as the primary
vertex position along z.

STTrackSeeding, using the sorted SpacePoint map and a Monte Carlo Look-Up Table (MC-LUT)
linking each B-layer module to the ones belonging to other logical layers, builds track seeds formed by
two SpacePoints and fits them with a straight line; one or more logical layers can be linked to the B-
layer, the latter option being particularly useful if robustness to detector inefficiencies must be improved.
If the primary vertex has already been reconstructed by STMuonVertex, a fraction of fake track seeds
can be rejected during their formation, applying a cut on their z distance from the primary vertex. Other-
wise, if no vertex information is available, an histogram whose resolution depends on the number of seeds
found is filled with the z impact parameter of each seed; its maximum is then taken as z position for the

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

13 Physics selection and HLT performance 209

primary vertex. This vertexing algorithm, which can be operated in both RoI and full scan modes, is best
suitable for high luminosity events containing many high pT tracks (e.g., b-tagging). Independent cuts on
r-φ and z impact parameters are eventually applied to the reconstructed seeds to further reduce the fake
fraction.

STThreePointFit extends track seeds with a third SpacePoint; it uses a Monte Carlo map associ-
ating to each seed a set of module roads [Footnote: A road is a list of modules ordered according to the ra-
dius at which they are placed starting from the innermost one] the track could have hit passing through the
Pixel or SCT detectors. A subset of modules is extracted from each road according to a user defined pa-
rameter relating to their "depth" inside it (e.g., the user can decide to use modules at the beginning or in
the middle of each road, etc.). SpacePoints from the selected modules are then used to extend the seed
and candidate tracks are fitted with a circle; ambiguities (e.g., tracks sharing at least one SpacePoint) can
be solved on the basis of the track quality, leading to an independent set of tracks that can be used for trig-
ger selection or as a seed for further extrapolation.

13.2.4.3 TRTLUT

TRT-LUT is a LVL2 tracking algorithm for track reconstruction in the TRT. It is described in detail else-
where cite{ref:TRTLUT}. The algorithm takes as input Hits in the TRT. The algorithmic processing con-
sists of Initial Track Finding, Local Maximum Finding, Track Splitting, and Track Fitting and Final
Selection. It outputs the Hits used and Tracks with their parameters.

During the Initial Track Finding, every hit in a three-dimensional image of the TRT detector is allowed to
belong to a number of possible predefined tracks characterized by different parameters. All such tracks
are stores in a Look-Up Table (LUT). Every hit increases the probability that a track is a genuine candi-
date by one unit.

The next step consists of Local Maximum Finding. A two-dimensional histogram is filled with bins in φ
and 1/pT. A histogram for a single track would consists of a “bow-tie” shaped region of bins with entries
at a peak in the center of the region. The bin at the peak of the histogram will, in an ideal case, contain all
the hits from the Track. The roads corresponding to other filled bins share straws with the peak bin, and
thus contain sub-sets of the hits from the track. A histogram for a more complex event would consist of a
superposition of entries from individual tracks. Hence, bins containing a complete set of points from each
track can be identified as local maxima in the histogram.

The Track Splitting stage of the algorithm analyzes the pattern of hits associated to a track candidate. By
rejecting fake candidates composed of hits from several low-pT tracks, the track splitting step results in an
overall reduction by a factor of roughly 2 in the number of track candidates. For roads containing a good
track candidate, it identifies and rejects any additional hits from one or more other tracks. The result of
the overall Track Splitting step is a candidate that consists of a sub-set of the straws within a road.

The final step of TRT-LUT, Track Fitting and Final Selection, performs a fit in the r-φ (z-φ) plane for the
barrel (end-caps) using a third order polynomial to improve the measurement of φ and pT. Only the straw
position is used (i.e., the drift time information is not used). The track is assumed to come from the nomi-
nal origin. After the fit, a reconstructed pT threshold of 0.5GeV/c is applied.

13.2.4.4 TRTKalman

TRT-Kalman cite{ref:trtkal} is a new package based on xKalman++ (see Section [Ref: sect:xkal]). The
name is in fact a misnomer since the Kalman filter component of xKalman++ is not used for the TRT; a
histogram search and Least Squares fit is used instead.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

210 13 Physics selection and HLT performance

TRT-Kalman incorporates following modified modules from xKalman:

• XK_Tracker_TRT: This reads TRT geometry from ROOT files. It uses InDetDescr, In-
DetIdentifier to access necessary Detector Description information;

• XK_Algorithm: A strategy is added to perform TRT standalone reconstruction;

• XK_Track: A step has been added with fine-tuning of track parameters after the histogramming
step and Least Squares fit;

• XKaTrtMan, XKaTRTRec: This contains xKalman++ internal steering algorithms;

• XKaTRTClusters: This component retrieves TRT_RDO_Container from StoreGate filled
from a ByteStream file.

•
[More text needed here from Sergey]

13.2.4.5 T2Calo

T2Calo cite{T2CaloCVS, T2CaloVariables, T2CaloRefSw, T2CaloRefSwStudies} is a clustering algo-
rithm for electromagnetic (EM) showers, seeded by the LVL1 EM trigger RoI positions cite{RefLVL1}.
This algorithm can select isolated EM objects from jets using the cluster ET and certain shower-shape
quantities.

The RIOs are calibrated calorimeter cells (LArCells and TileCells), imported from the offline re-
construction. Both LArCells and TileCells have CaloCell as common base class. The output
(T2EMCluster) is a specific LVL2 class containing the cluster energy and position, and the shower-
shape variables useful for the selection of EM showers.

The first step in T2Calo is to refine the LVL1 position from the cell with highest energy in the second
sampling of the EM calorimeter. This position (η1, φ1) is later refined in the second sampling by calculat-
ing the energy weighted position (ηc, φc) in a window of 3 × 7 cells (in η × φ) centred in (η1, φ1). In Ref.
cite{T2CaloVariables}, the steps to perform the jet rejection are the following:

• In sampling 2, Rshapeη = E3 × 7 / E7 × 7 is calculated. The expression En × m stands for the ener-
gy deposited in a window of n × m around (η1, φ1). This shape variable takes into account that
most of the energy of EM showers is deposited in the second sampling of the EM calorimeter.

• In sampling 1, Rstripη = (E1st - E2nd) / (E1st + E2nd) is obtained in a window of ∆ η × ∆ φ =
0.125 × 0.2 around (ηc, φc). E1st and E2nd are the energies of the two highest local maxima found,
obtained in a strip-by-strip basis. The two φ-bins are summed and only the scan in η is considered.
A local maximum is defined as a single strip with energy greater than its two adjacent strips.

• The total transverse energy E\mathrm T deposited in the EM calorimeter is calculated in a window
of 3 × 7 cells around (η1, φ1).

• Finally, the energy that leaks into the hadron calorimeter EhadT is calculated in a window of size ∆
η × ∆ φ = 0.2 × 0.2 around (ηc, φc).

13.2.4.6 muFast

The muFast algorithm is a LVL2 tracking algorithm for the Muon Spectrometer. In the past, it existed in
the Reference software from ATRIG, and this version is described in detail elsewhere cite{ref:mufast}.

The algorithm itself consists of three parts:

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

13 Physics selection and HLT performance 211

• Data Preparation: This essentially rearranges simulated bits into what will come from the online
system. MDT RDOs are put into data classes with electronics info and offline Identifiers. Use is
made of a global map of MDT to retrieve global position of each DetectorElement.

• Selection: This consists of taking RDOs and converting them into a private structure using stan-
dalone code running with the RoI scheme. The processing steps are modular and substitutable.
There is no data model for exchanging information, but instead, information is written into a com-
mon memory space. Use is made of a Look Up Table (LUT) which reads from an ASCII file.

• Monitoring: This component of muFast fills ntuples and histograms for use later on. It only needs
the internal data structure filled in the Selection component of muFast.

13.2.5 HLT Algorithms for EF

13.2.5.1 xKalman++

xKalman++ is a package for global pattern recognition and Track fitting in the Inner Detector for charged
tracks with transverse momentum above 0.5GeV/c. A more detailed description of this algorithm is avail-
able elsewhere cite{xKalman}.

The algorithm starts the track reconstruction in the TRT using a histogramming method or in the Pixel
and SCT detector layers using segment search.

The first reconstruction method outputs a set of possible track candidate trajectories defined as an initial
helix with a set of parameters and a covariance matrix. As a second step the helix is then used to define a
track road through the precision layers, where all the measured clusters are collected. xKalman++ at-
tempts to find all possible helix trajectories within the initial road and with a number of sufficient clusters.

The primary track finding in the Pixels or SCT outputs a set of SpacePoints as an initial trajectory estima-
tion. In the next step these set of space points serve as an input for the Kalman filter-smoother formalism
that will add the information from the precision layers. Each reconstructed track is then extrapolated back
into the TRT, where a narrow road can be defined around the extrapolation result. All TRT Clusters to-
gether with the drift time hits found within this road are then included for the final track-finding and
track-fitting steps.

There are three seeding mechanism available in the offline environment: XKaSeedsAll, the reconstruc-
tion of the full event; XKaSeedKINE reconstruction of a region of interest and soon available EM calo-
rimeter seeding. In the HLT environment as an EF algorithm xKalman++ will be seeded by the LVL2
result.

After the pattern recognition and Track fitting steps xKalman++ stores the final Track candidates as
SimpleTrack objects in a SimpleTrackCollection. The Track candidate contains the following
information:

• Fit procedure used (m-fit or e-fit);

• Helix parameters and their covariance matrix at the end-points of the filter procedure in the preci-
sion layers (point on the trajectory closest to the vertex) and in the TRT (point on the trajectory
closest to calorimeter);

• Total χ2 resulting from final fit procedure;

• List of all hits on track from all sub detectors;

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

212 13 Physics selection and HLT performance

• Total number of precision hits Np.

• Total number of straw hits Ns, empty straws crossed Ne, and of drift-time hits Nt.

•

• Furthermore, a track candidate is stored in the final output bank if it passes the following cuts:

• The number of precision hits is larger than 5 to 7;

• The ratio Ns/(N\s+Ne) is larger than 0.7 to 0.8;

• The ratio Nt/N\s is larger than 0.5 to 0.7;

• No previously accepted track has the same set of hits as the current one; this last cut removes full
ghost tracks.

13.2.5.2 iPatRec

A detailed description of iPatRec is available elsewhere cite{iPatRec}.

[Need text here.]

13.2.5.3 LArClusterRec

LArClusterRec is the reconstruction package for electromagnetic clusters in the calorimeter cite{LAr-
ClusterRec}. It is generally used in conjunction with TileRec and referred to collectively as CaloRec.

In the first step towers are created by summing the cells of the electromagnetic calorimeter and the pre-
sampler in depth using a granularity of ∆η × ∆φ = 0.025× 0.025. The input of the tower building are the
calibrated calorimeter cells which are produced by the package LArCellRec or TileRec.

In the next step a sliding window algorithm is used. In case a local maximum is found with a total energy
in the window above a given transverse energy threshold, clusters are created which are subsequently
stored in the cluster container. To reconstruct the cluster energy and position is calculated in a given win-
dow. [Footnote: This window can be different from the one used for the sliding window algorithm.] The
cluster energy is corrected for η and φ modulations and leakage outside the cluster in a given window. In
the region between the barrel and end-cap calorimeter the cluster energy is in addition corrected for ener-
gy losses using the energy deposit in the crack scintillators. The η position in the first and second sam-
pling is corrected for s-shapes, which is a geometrical effect. The φ position is corrected for an offset,
which is also a geometry effect.

13.2.5.4 egammaRec

EgammaRec is designed to calculate useful quantities to separate clusters in the electromagnetic calorim-
eter from jets. To do so, electromagnetic cluster information as well as tracking information is used.

In the electromagnetic calorimeter electrons are narrow objects, while jets tend to have a broader profile.
Hence, shower shapes can be used to reject jets. This is handled by the EMShowerBuilder which calls
different algorithms which calculate diverse quantities using the information in the first and second sam-
pling of the electromagnetic calorimeter as well as the leakage into the first sampling of the hadronic cal-
orimeter.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

13 Physics selection and HLT performance 213

Cluster and track information is combined in the TrackMatchBuilder. For a given cluster the nearest
track is searched for by correctly taking into account the bending of tracks in the magnetic field. In case a
track is found in a certain distance from the cluster and the E/p ratio fulfils 0.5 < E/p < 1.5 the track match
is successful. In the final e/jet separation step, jets can be rejecting by applying harder E/p cuts as well as
a cut in ∆η and ∆φ between the cluster and the track. The next final step after egammaRec has run is the
final particle identification step. A first version of this package is available, but it is not yet tested.

13.2.5.5 Moore

Moore (Muon Object Oriented Reconstruction) is a track reconstruction package for the Muon Spectrom-
eter. A detailed description of Moore is available elsewhere cite{Moore}.

Moore takes as input collections of digits or clusters inside the Muon Spectrometer (CSC, MDT, RPC,
TGC) and outputs fitted reconstructed tracks whose parameters are expressed at the entrance of the muon
spectrometer.

The reconstruction is performed in several steps and each step is driven by an Algorithm module, Moo-
MakeXXX. Each algorithm is independent (i.e., it retrieves objects created by the previous modules from
StoreGate and it builds a transient object to be recorded in StoreGate where it is available for the subse-
quent algorithms). The only link between algorithms are the transient objects, in such a way that the algo-
rithms depend on transient objects but transient objects do not depend on algorithms. The decoupling
between data and algorithms and the natural step sequence of algorithm performing the reconstruction
gives the opportunity to plug-in different reconstruction algorithms at run time.

As it is now, the overall reconstruction starts from the searches for φ regions of activity and builds
PhiSegments (MooMakePhiSegments). For each φ-Segment, the associated MDTs are found and a
crude RZSegment is built (this is essentially a collection of z hits) (MooMakeRZSegments).

Inside the MDTs the drift distance is calculated from the drift time, by applying various corrections: such
as the TOF, the second coordinate, the propagation along the wire, the Lorenz effect. From the 4 tangen-
tial lines the best one is found. All the MDT segments of the outer station are combined with those of the
Middle layer. The MDT hits of each combination are added to the phi-hits of the φ Segment, forming out-
er track candidates. All the successfully fitted candidates are kept for further processing (MooMakeR-
oads).

The successful outer track is subsequently used to associate inner station MDT hits. A final track is de-
fined as a successfully fitted collection of trigger hits and MDT hits from at least two layers (MooMake-
Tracks). The parameters of the fitted track are referred to the first measured point and are therefore
expressed at the entrance of the Muon Spectrometer.

When dealing with data already selected by the trigger the first two steps (MooMakePhiSegments)
and (MooMakeRZSegments) can be substitute with ad hoc makers that seed the track search in the re-
gions selected by the trigger.

13.3 Signatures, rates and efficiencies

In the following subsections, the physics performance of algorithms for LVL2 and EF is summarized for
five final-state classes: electrons and photons; muons; jets, taus and missing ET; b-jets; and B-physics.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

214 13 Physics selection and HLT performance

This broad classification stems from the physics goals of the ATLAS experiment, as explained in Chapter
4. Whenever possible, results will include the realistic use of data formats and associated converters (as
described in previous section), steering control (as described in Chapter 9), highlighting the flexible
boundary between LVL2 and EF. Selection schemes are then derived, which contain the signatures used
to decide whether or not to reject events. In order to maximize the discovery potential, the selection
schemes generally only use inclusive signatures. Except for the case of B physics, reconstruction of ex-
clusive decays is not required and no topological variables (e.g. the calculation of invariant masses from a
combination of several high-pT objects) are used in the selection, although this is technically feasible at
LVL2 or in particular in the EF (e.g. to select Z → l+l- decays exclusively).

It is worthwhile noticing that system performance (e.g. execution time, amount of data needed) is one of
the major requirement in the HLT selection, to comply with the constraints imposed by the on-line envi-
ronment and resources. In this chapter an indication of the compliance with those requirements will be
given for the most important selections, whilst a detailed analysis of the different contributions to those
figures will be given in Chapter 15. In general, all results have been achieved by optimizing concurrently
physics and system performances.

13.3.1 e/gamma

In the present view of the ATLAS trigger menus, the inclusive electron and photon triggers are expected
to contribute an important fraction of the total high-pT trigger rate. After the selection in LVL2 and the
EF, the remaining rate will contain a significant contribution from signal events from Standard Model
physics processes containing real isolated electrons or photons (W → eν, Z → ee, direct photon produc-
tion, etc.).

The electron and photon triggers can be viewed as a series of selection steps of increasing complexity. Af-
ter receiving the LVL1 electromagnetic (e.m.) trigger RoI positions, the LVL2 trigger performs a selec-
tion of isolated e.m. clusters using the full calorimeter granularity and detailed calibration. This selection
is based on cluster ET and shower-shape quantities that distinguish isolated e.m. objects from jets. A fur-
ther, more refined calorimeter-based selection may classify the e.m. cluster as a LVL2 photon trigger ob-
ject.

Electrons are identified at LVL2 by associating the e.m. cluster with a track in the Inner Detector. This as-
sociation can be as simple as requiring the presence of a track with a minimum pT in the e.m. RoI, but
may, in addition, require position and momentum matching between the track and the cluster. Typically,
track candidates are found by independent searches in the TRT (needs to be seen if we get it working in
time) and SCT/Pixel (‘Precision’) detectors in the region identified by the LVL1 RoI. Details of the differ-
ent LVL2 algorithms are described in.

As currently planned by the HLT scheme, the EF will select events using as far as possible the algorithms
of the ATLAS offline reconstruction system. The present study therefore uses the available ATLAS of-
fline reconstruction software as a prototype of the future EF code. However, the criteria to identify elec-
trons and photons are softer at the EF level in order not to loose events prematurely. The EF algorithm
components (calorimetry, tracking and particle identification) are treated in a similar way as for LVL2.
The main differences with respect to LVL2 derive from the availability at the EF of more detailed calibra-
tions and more sophisticated algorithms with access to the full-event data. The improved performance re-
sults in sharper thresholds and better background rejection. In the case of electrons, bremsstrahlung
recovery will be performed for the first time at the EF. In addition, a photon-conversion recovery proce-
dure will be applied to photon candidates at the EF.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

13 Physics selection and HLT performance 215

In the following the system and physics performance of the selection of electrons by the HLT will be re-
viewed in detail. The photon selection will not be considered here and these study are currently in
progress. The physics performance of the electron and photon selection has been already studied in detail
in the past by the HLT and are reported in the trigger TP. The system performance of this selection is dis-
cussed in Chapter 15.

13.3.1.1 HLT Electron Selection Performance

The performance of the electron and photon triggers has been estimated for single electrons and photons,
and for some standard physics channels (e.g. Z → ee, W → eν, H → 4e). The performance has been char-
acterized in terms of efficiency for the signal channel, rate expected for the selection and algorithm exe-
cution time. The rates shown in this and in the following sections have been obtained using a sample of
simulated di-jet events with pile-up added for the low and design luminosity scenario. In general, events
with electrons and photons are selected on the basis of single high-pT objects or of pairs of lower-pT ob-
jects. The physics performance of the electron triggers is summarized here and documented in detail for
both the LVL2 trigger, and the EF, algorithms in XXX.

The performance of the single isolated electron HLT algorithm is summarized in table xxx as a function
of the main steps in the LVL2–EF trigger chain. The trigger steps have been factorized by detector in or-
der to show the overall computational load and rejection that each stage contributes to the trigger. The ta-
ble shows that the input rate from the LVL2 electron trigger to the EF is xxx Hz (xxx Hz) at design (low)
luminosity for a nominal pT threshold of 30 GeV (25 GeV). The overall reduction in rate achieved by
LVL2 is a factor of xx (xx) for a loss of efficiency of xx% (xx%) with respect to LVL1. The additional

Table 13-1 Performance of the isolated electron HLT trigger at design and low luminosity for the single electron.
The results are presented in a single sequence, except for the starting point of the LVL2 tracking, where two
alternatives (TRT and Precision) are shown. ‘Matching’ refers to position and energy–momentum matching
between calorimeter clusters and reconstructed tracks (at LVL2 both Precision and TRT tracks are used). The
efficiencies are given for single electrons of pT = 30 (25) GeV a design (low) luminosity over the full rapidity
range |η| < 2.5. The efficiencies and rates are given with respect to a LVL1 output efficiency of 9x% (9x%) and a
LVL1 rate for e.m. clusters of xxx kHz (xxx kHz). The timing results quoted here are for events from the di-jet
sample and are scaled to correspond to a 500 MHz Pentium III machine running Linux (what will be our refer-
ence? Answer: It will be a 4 GHz machine, Valerio). The terms m50 and m95 are defined in xxx. The quoted
errors are statistical.

Trigger
Step

Design Luminosity Low Luminosity

Rate
[Hz]

Efficiency
[%]

Timing
m50 / m95

Rate
[Hz]

Efficiency
[%]

 Timing
m50 / m95

LVL2 Calo 3490 ±±
160

97.1 ± 0.3 0.20 / 0.26 ms 1100 ± 30 96.0 ± 0.6 0.15 / 0.23 ms

LVL2 Precision 620 ± 70 90.3 ± 0.6 6.2 / 12.7 ms 150 ± 11 92.4 ± 0.8 2.4 / 5.8 ms

LVL2 TRT 1360 ± 100 89.7 ± 0.6 0.4 / 1.2 s 360 ± 17 89.2 ± 0.9 31 / 210 ms

LVL2 Matching 460 ± 60 85.3 ± 0.7 -- 140 ± 11 88.1 ± 0.9 --

EF Calo 313 ± 50 83.5 ± 0.8 0.39 / 0.63 s 85 ± 8 86.4 ± 1.0 0.34 / 0.56 s

EF ID 149 ± 34 79.3 ± 0.8 11 / 71s 57 ± 7 82.4 ± 1.1 0.31 / 1.6 s

EF Matching 117 ± 30 77.6 ± 0.8 -- 41 ± 6 80.8 ± 1.2 --

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

216 13 Physics selection and HLT performance

rate reduction provided by the EF amounts to a factor of xxx (xxx) for a relative efficiency loss of xxx%
(xxx%). Using the offline electron selection the rate is reduced by xxx (xxx)%, for an additional loss of
xx (xx)% in efficiency. This shows that the HLT selection is very powerful. The LVL2 selection has an ef-
ficiency of 9x% (9x%) for the events selected by the EF alone, and the additional loss of events is mostly
due to the fast track selection at LVL2, showing the expected correlation of inefficiencies at the LVL2 and
EF stages (e.g. due to bremsstrahlung).

At low luminosity, the events remaining after the HLT electron selection consist of W → eν decays
(xx ± x)%, isolated electrons from (b,c) → eX decays (xx ± x)% and background from high-pT photon
conversions and misidentified hadrons (xx ± x)%. At design luminosity, where a higher pT threshold is
applied, the corresponding proportions are (xx ± x)%, (xx ± x)% and (xx ± x)%. The quoted errors are the
statistical uncertainties on the estimates. As seen around 50% of the selected events contain ‘real’ elec-
trons, hence a further improvement of this selection can only be small.

Electron decays of the W are selected by the EF with an efficiency of (xx ± x)% at low luminosity and
(xx ± x)% at design luminosity, in agreement with the values given in table xxx for single electrons of
25 GeV and 30 GeV transverse momentum respectively. Finally, as an example of the performance for a
physics signal, the HLT selection efficiency (using both the single- and the double-electron trigger) for
the decay H(130) → 4e is (9xx ± x)% with respect to the LVL1 efficiency of 9x.x% at low luminosity;
these high efficiencies are due to the large electron multiplicity in the final state.

13.3.1.2 HLT Electron/Photon Algorithm Optimization

The algorithm execution time has been measured in order to study the resource constraints they may place
on the overall HLT/DAQ system. This exploratory study addresses the interplay between the physics and
the system performance aspects. Timing measurements were carried out on the feature-extraction part of
the algorithms, excluding as much as possible any I/O (data read/write), and thus characterizing the most
computationally complex aspects of the algorithms. In order to assess the impact of tails on the timing re-
sults, the measurements are given in terms of the median (m50) and the latency within which 95% of the
events are processed (m95)1.

To understand where the computing resources are being used in the trigger, the different parts of the
LVL2 and EF algorithms have been profiled in the test-bed studies, which are summarized in SAUL’s sec-
tion. There are still quite some possibilities to speed up the execution time and the numbers given in sec-
tion xxx will improve with time. Another possibility to speed up the code is to optimize different
algorithm parameters. Here the aim is to eliminate any resource-consuming tasks that contribute only
marginally to the rejection. To give an example, in case zero-suppression is applied for the calorimeter
cells, the execution time for data access as well as execution of the LVL2 electron selection by T2Calo
can be reduced. Applying a zero-suppression cut of 3σ of the electronic noise level reducing the time for
the algorithm from xxx (xxx) to xxx (xxx) ms and for the data access from xxx (xxx) to xxx (xxx) at low
and design luminosity.

Similar studies have been performed for the EF. As an example, Figure xxx shows the execution-time de-
pendence of the EF electron-tracking algorithm on the transverse-energy threshold of the calorimeter
cluster used to seed the reconstruction. (The seed energy scale does not correspond to the calibrated elec-
tron energy scale.) Increasing the threshold, thus reducing the number of seeds, reduces the execution
time (in particular m95) with a negligible impact on the physics performance.

1. The timing measurements were carried out on several different platforms, but have been converted to the same
overall scale, corresponding to a 500 MHz Pentium II equivalent.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

13 Physics selection and HLT performance 217

The present system performance of the electron/photon algorithms can be improved at all levels of the
HLT. There are studies under way which will be documented in future TDAQ notes.

(Comment from Monika: In this section I just want to give few examples and some outlook of what can be
expected in the future. Boundary with Saul’s section has to be sorted out.)

13.3.1.3 HLT Strategy and the LVL2–EF Boundary

The use of system resources in the electron HLT can be minimized by exploiting the modularity of the
trigger. By ordering the trigger steps in such a way that events are rejected as early as possible, both over-
all processing times and data transfers are reduced. As an example, at design luminosity, the EF total elec-
tron trigger execution time is reduced by a factor of two by rejecting events immediately after the
calorimeter reconstruction. Similar gains are possible at LVL2.

Factorizing the trigger algorithm components also provides flexibility to move the rejection power from
LVL2 to the EF or vice versa, to optimize the following: the performance of the implementation of the al-
gorithm; the robustness of the selection with respect to the rate; the load implied at each level; etc. As an
example, figure xxx shows that an increase in efficiency can be obtained, with a modest increase in the to-
tal HLT output rate, by moving the whole LVL2 tracking selection to the EF. However, in this case, the in-
put rate to the EF would increase by a factor of about eight, with important consequences on the
computing load on the EF.

An important aspect of optimizing the sharing of rejection between LVL2 and the EF is the determination
of the rejection contributed by each trigger level at the same efficiency. After tuning the LVL2 and EF
electron selections to yield the same efficiency for events selected by LVL1, the EF contribution to the to-
tal reduction in rate is still better than LVL2 by a factor of two (three) at design (low) luminosity

as explained in STEFAN’s section.

In case the incoming trigger rate is too high and needs to be reduced two obvious ways to do so is either
to raise the energy threshold of the trigger menu item or by stricter selection criteria. All of these will im-
ply an additional loss in efficiency for physics signals. Part of this loss in physics can then be recovered
by more selective triggers. The preferred and easiest way to reduce the rate is to raise the energy thresh-
olds. The LVL1 rate is dominated by the contribution from single high-pT e.m. objects. As an example,
raising the thresholds by ET=5GeV of the single electron trigger would yield in a final HLT rate of xxx
(xxx) at low (design) luminosity. This is also seen in Figure xxx, which illustrates the impact of raising
the threshold for the single-electron HLT selection only (nominal threshold of 30 GeV), while keeping the
double-electron trigger threshold at its nominal value (20 GeV for each electron). The upper plot indi-
cates the reduction in rate for the sum of the single- and the double-electron trigger contributions. As the
threshold is increased, besides the reduction of fake electrons, also the contribution from real W → eν de-
cays is gradually rejected. The lower plot shows the impact on another physics signal, the Z → e+e- decay:
for thresholds below 35 GeV, the efficiency for Z’s is only slightly reduced. Decays with more than two
electrons are affected even less, e.g. in the case of H(130) → 4e.

As illustrated above, the proposed strategy contains considerable flexibility. Various possibilities exist to
reduce the required computing resources or to improve the physics performance. For many channels of
interest, the selection scheme also provides considerable redundancy.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

218 13 Physics selection and HLT performance

13.3.2 Muon selection

The main purpose of the high-level muon trigger is the accurate reconstruction of muon tracks in the RoIs
indicated by the LVL1 muon trigger. LVL2 and EF must reject low-pT muons, secondary muons produced
in the in flight decays of charged pions and kaons and fake muons originating from the cavern back-
ground. The EF must be able to reconstruct additional muons present in the event not reconstructed or se-
lected by the LVL2 trigger.

Whilst the LVL1 trigger system uses only hits from the dedicated trigger detectors (RPCs in the barrel and
TGCs in the endcap), the LVL2 and EF has access to the full measurements of the Muon Spectrometer,
including in particular the data from the Monitored Drift Tubes (MDTs). This allows the best muon track
reconstruction. The high background environment in the Muon Spectrometer demands algorithms with
robust and fast pattern recognition capable of rejecting hist induced by the cavern background.

The tracks found in the LVL2 Muon Trigger are extrapolated for combination with the Inner Detector and
the Calorimeter. Matching between muon tracks measured independently in the Muon System and the In-
ner Detector selects prompt muons and reject fake and secondary muons. This is important in particular
for the B-physics trigger in low-luminosity running, for which the selection of prompt low-pT muons
events defines the input of the B-physics trigger algorithm.

The studies presented in this section are limited to the barrel region (|η|<1).

13.3.2.1 The LVL2 Muon Standalone Algorithm muFast

The muFast algorithm has been designed expressly for the online selection environment. The program is
steered by the RoI given by the LVL1 Muon Trigger and uses both RPCs and MDTs measurements. At
present this algorithm is limited to the barrel region and it is based on four sequential steps:

1. LVL1 emulation; the muon pattern recognition in the MDT system is initiated by the RPC hits that
induced the LVL1 trigger accept. Among these hits, only those related to the pivot plane (middle
RPC station) are provided by the muon trigger processor; the ones related to the coincidence plane
(innermost and outermost RPC stations) have to be identified running a fast algorithm that simu-
lates the basic logic of the LVL1selection.

2. Pattern recognition: it is performed using the RPC hits that induced the LVL1 trigger to define a
road in the MDT chambers around the muon trajectory. MDT tubes lying within the road are se-
lected and a contiguity algorithm is applied to remove background hits not associated with the
muon trajectory;

3. A straight-line track fit is made to the selected tubes (one per each tube monolayer) within each
MDT station. For this procedure the drift-time measurements is used to fully exploit the high
measurement accuracy of the muon tracking system. The track sagitta is then evaluated.

4. A fast pT estimate is made using LUTs. The LUT encodes the linear relationship between the
measured sagitta and the Q/pT, as a function of eta and phi.

The output of this algorithm is the measurement of the muon transverse momentum pT at the main vertex,
eta and phi.

13.3.2.2 The LVL2 Muon Combined Algorithm muComb

The combination of the features of the track measured in the Muon Spectrometer and the Inner Detector
(ID) at LVL2 provides a rejection of π and K decays to µ and of fake muons induced by the cavern back-

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

13 Physics selection and HLT performance 219

ground. Moreover the combination of the two measurements improves the momentum resolution of re-
constructed muons over a large momentum range.

The matching of the Muon Spectrometer tracks and of the ID can be performed extrapolating the ID track
to the muon system. The procedure needs to take into account the detector geometry, the material compo-
sition and the inhomogeneity of the magnetic field. An accurate extrapolation would require the use of de-
tailed geometry and magnetic field databases, together with a fine tracking. All this would is expensive in
terms of CPU time and therefore not acceptable for the LVL2 trigger.

To provide a fast tracking procedure, the effects of the geometry, the materials and of the magnetic field
have been described by simple analytic functions of eta and phi. The extrapolation of the ID tracks to the
entrance of the Muon Spectrometer is performed using linear extrapolation in two independent projec-
tions: the transverse and the longitudinal views. Two coordinates are extrapolated: the z-coordinate and
the azimuthal angle phi. The linear extrapolation is corrected using average corrections. In the transverse
projection the ID track extrapolation in phi is corrected as follows:

13-1

where α is related to the field integral and allows for the transverse energy loss in the material of the
calorimeter, that is approximately independent of the track transverse momentum pT. Both alpha and
have been determined by fitting of simulated muons as a function of pT. It is found that ~ 1.5, i.e.
about half of the transverse energy loss of low energy muons, as naively expected. A similar approach has
been followed in the case of the extrapolation of the z-coordinate in the longitudinal view.

The matching is done geometrically using cuts on the residuals in each of z and phi.

For matching tracks the combined transverse muon momentum is estimated through a weighted average
of the independent pT measurements in the Muon Spectrometer and in the Inner Detector. For each com-
bined track, a χ2 parameter is used to evaluate the quality of the pT matching. Thanks to the high quality
of the muon pT measurements in both detectors, secondary muons from π and K decays give typically bad
χ2 matching, and thus can be rejected.

13.3.2.3 The Muon Event Filter Algorithm MOORE

in preparation

13.3.2.4 The Physics Performances of LVL2 Muon algorithms

The pT resolution of reconstructed muons is crucial to the selection efficiency and to the rejection of low
pT tracks that can be achieved at LVL2. The distribution of obtained by
the muFast algorithm is shown in figure [figure TP 8-5] for pT=6 GeV/c. The non Gaussian tails arise
largely from the presence of soft particles produced by the muon interacting with the material of the de-
tector.

The pT resolution of the muFast algorithm is shown as a function of pT in figure [figure TP 8-7]. As
shown in the figure, the resolution ranges between 4.0% and 5.5% for muon in the pT interval 6-20 GeV/
c. These results are well compared with the transverse momentum resolution obtained by the offline
muon reconstruction program MUONBOX.

∆ϕ α
pT pT

0–
------------------=

pT
0

pT
0

∆ϕ pT
0

1 pT
muon⁄ 1 pT

true⁄–() 1 pT
true⁄()⁄

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

220 13 Physics selection and HLT performance

The selection efficiency of muFast for selecting prompt single muons at 6 GeV/c and 20 GeV/c thresh-
olds, relative to muons accepted by the LVL1 muon trigger, are shown in figure [figure TP 8-9]. For a
nominal threshold of 6 GeV/c, the efficiency is about 90%, including detector acceptance. This efficiency
is 95% for the 20 GeV threshold.

The total rates after this algorithm, including the rejection
provided by the LVL1 selection, have been evaluated by
convolving the algorithm efficiency as a function of pT with
the muon differential cross section production of the domi-
nant physics processes. Where the available statistics are too
low (in particular for the high-pT rate calculation) to evaluate
the efficiency, the lowest pT at which an efficiency estimate
has ben possible (pT=10 GeV/c) is assumed conservatively
to constitute a plateau extending down to the lower limit of
the pT acceptance (pT=3 GeV/c in the barrel). The rates from
π/K decays are calculated using the predicted cross-sections
from the DMPJET program, and would be lower by about
50% if the PYTHIA prediction were used.

The total rates after LVL2 are shown in Table 13-2. [THE
ABOVE NUMBERS NEEDS TO BE CHECKED].

Preliminary studies of the trigger rate arising from the cavern background as predicted by the FLUKA
package have been done. The probability that a fake LVL1 muon trigger is accepted by the LVL2 is below
10-2. This upper limit is sufficient to neglect the contribution from fake muons.

Preliminary studies have been made to evaluate the physics performances of the muComb algorithm. Fig-
ure [figure TP 8-10] shows the combined reconstruction efficiency of prompt and secondary muons, as a
function of the muon pT, where the standalone codes from muFast and the LVL2 Precision algorithm [ref-
erence to the related chapter] have been used. The requirement of a good muon track matching (z/phi and
pT matching) reduces the low pT trigger rate to 1.0 kHz: a factor three reduction compared to the rate
from the muFast algorithm. Including the further reduction in rate due to the increase in pT resolution for
prompt muons, the total rate from the muComb algorithm is 2.1 kHz from muons with pT>6 GeV/c.

13.3.2.5 The Physics Performances of the Muon Event Filter

in preparation

13.3.2.6 The Timing Performances of the Muon Algorithms

The muFast trigger algorithm has been benchmarked on several processor. On a processor corresponding
to 10 SPECint95, muFast takes ~2ms/RoI, fairly independent from the trigger threshold and the muon pT
analyzed. If the data access is taken into account the time increases to XX ms.

A realistic evaluation of the time needed to the LVL2 muon trigger to take a decision has to take into ac-
count the time needed to move the data from the RoBs to the LVL2 processor in the ATLAS TDAQ archi-
tecture. Testbed measurements have been performed and indicates that the global time taken from the
LVL2 trigger is about YY ms.

Table 13-2 Total output rates [kHz] of the
LVL2 muon trigger after application of the mu
rithm for the 6 GeV/c low-pT threshold at low
and 20 GeV threshold at the design luminosity.

Physics Process low-pT high-pT

p/K decays 3.1 0.06

b decays 1.0 0.09

c decays 0.5 0.05

W→µν negligible 0.05

cavern background negligible negligibl

Total 4.6 0.24

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

13 Physics selection and HLT performance 221

13.3.3 Tau/jets/ETmiss

Highlight major discovery channels, for taus probably start using bricolage

13.3.4 b-tagging

Define on-line strategy for this, explain why we think we need it, discuss implications for jets thresholds
(and hence rates)

13.3.5 B-physics

About one collision in every hundred will produce a bb quark pair. Therefore, in addition to rejecting non-
bb events, the B-trigger must have the ability to identify and select those events containing B-decay chan-
nels of specific interest. Important areas include CP-violation studies with the channels Bd→π+π− and
Bd→J/ψKs (with both J/ψ→e+e− and J/ψ→µ+µ−); measurements of Bs oscillations in Bs→Dsπ and
Bs→Dsa1 with Ds→ππ; analysis of Bs→J/ψ and B→J/ψη; rare decays of the type Bd,s→µ+µ−X; b-pro-
duction measurements and precision measurements with B-hadrons. Since these are precision measure-
ments and searches for rare decays, high statistics are required. The large number of bb pairs produced at
the LHC mean that ATLAS is well placed to make a significant contribution in these areas.

Since the Technical Proposal the B-trigger has been re-assessed in the light of a number of developments,
including the likelihood of a reduced ID layout at the start of running, an increase in the target start-up lu-
minosity and various trigger deferral scenarios. The aim is to provide the maximum possible coverage of
key B-physics channels within the available resources.

It is important to study a range of scenarios since the actual start-up conditions are uncertain, luminosity
is expected to vary from fill-to-fill, and there are uncertainties in the physics cross-sections and in the cal-
culation of required resources. A flexible trigger strategy has, therefore, been developed based on a di-
muon trigger at the start of higher luminosity LHC fills and introducing further triggers later in the beam
coast or for lower luminosity fills (over the period of a beam-coast the luminosity is expected to fall by
about a factor of two). Two strategies have been investigated for these additional triggers, as follows.

• Require a LVL1 JET or EM RoI in addition to a single-muon trigger (pT>8 GeV). At LVL2 and the
EF, tracks are reconstructed within RoI using pixel, SCT and TRT information. The reconstructed
tracks form the basis of selections for e.g. J/ψ(ee), B(ππ) and Ds(φπ). Since track reconstruction is
performed inside RoI, the resources required are modest.

• A full-scan of the SCT and pixels is performed for events with a single-muon trigger (pT>8~GeV).
The reconstructed tracks form the basis of selections for e.g. B(ππ) and Ds(φπ). This promises bet-
ter efficiency than the above method, but requires somewhat greater resources in order to perform
the full-scan.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

222 13 Physics selection and HLT performance

In all cases, at least one level-1 muon trigger is re-
quired to initiate the B-trigger. Since the cross-sec-
tion for inclusive muon production from pion and
kaon decays falls more rapidly with pT than that for
prompt muon production from b-decays, an appro-
priate choice of pT threshold gives a powerful re-
duction of the trigger rate due to background
processes. For example, a threshold of pT > 8 GeV
would gives a single-muon trigger rate of 10 kHz at
LVL1 for a luminosity of 1033 cm−2s−1. Most of
this rate is due to muons with true pT below thresh-
old originating from pion and kaon decay, a large
proportion of which can be rejected at LVL2 on the
basis of more precise track measurements. After
the LVL2 selection the trigger rate is about 2~kHz
at a luminosity of 1033 cm−2s−1; about one third of
this rate is due to b→µ decays. It is important not
to set the muon pT threshold too high as this would
significantly reduce the statistics in the signal chan-
nels and render the measurements un-competitive.

13.3.6 Di-muon triggers

A di-muon trigger provides a very effective selection for several important channels, e.g. B→J/ψ(µ+µ−

)Ks and B→µ+µ−(X). The LVL1 muon trigger is efficient down to a pT of about 5 GeV in the barrel re-
gion and about 3 GeV in the end-caps. However the actual thresholds used for the di-muon trigger will be
determined by rate limitations. For example, a pT threshold of 6 GeV would give a di-muon trigger rate of
about 600 Hz after LVL1 at a luminosity of 2.0 × 1033 cm−2s−1. These triggers are mostly due to muons
from heavy flavour decays plus some single muons which are doubly counted due to overlaps in the end-
cap trigger chambers. The later are removed when the muons are subsequently confirmed at LVL2 using
information from the muon precision chambers and ID. At the EF, tracks are refit and specific selections
made on the basis of mass and decay length cuts. These consist of semi-inclusive selections, for example
to select J/ψ(µ+µ−) decays with a displaced vertex, and in some cases exclusive selections such as for
Bd,s→µ+µ. The final trigger rate, after the EF, is about 20~Hz at a luminosity of 2.0 × 1033 cm−2s−1.

13.3.7 Hadronic final states

For hadronic final states, two strategies have been studied based on, for events with a muon trigger, either
an ID full-scan or a RoI-based selection. An ID full-scan consists of track-reconstruction within the entire
volume of the SCT and Pixel detectors <Ref_idscan> and, optionally, the TRT <ref TRTscan>. The alter-
native strategy uses low ET LVL1 jet clusters to define RoIs for track reconstruction in the ID. By limiting
track reconstruction to the part of the ID lying within the RoI, about 10% on average, there is potential for
up to a factor of ten saving in execution time compared to the full-scan. Preliminary studies of efficiency
and jet-cluster multiplicity have been made using a fast simulation which includes a detailed parametriza-
tion of the calorimeter. These studies indicate that a threshold of ET > 5 GeV gives a reasonable jet cluster
multiplicity, i.e. a mean of about two RoI per event for events containing a muon with pT > 6 GeV, see
Fig. <jet roi Mult>. A trigger based on this threshold would be efficient for B→Dsπ and B→ππ events
with a B-hadron pT above about 15 GeV.

Figure 13-1 Differential cross-section ds/dpT for
inclusive muon production in ATLAS in the pseudo-
rapidity range |η| < 2.7.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

13 Physics selection and HLT performance 223

Following the ID track reconstruction (either full-scan or RoI-based) further selections are made for spe-
cific channels of interest. These are kept as inclusive as possible at level-2 with some more exclusive se-
lections at the EF. For example, samples of Bs→Dsπ+ and Bs→Dsa1 events can both be triggered by
selecting events containing a Ds(φπ−) candidate.

Tracks are refit at the EF inside RoI defined from the results of LVL2. Using LVL2 to guide the EF recon-
struction reduces the amount of data to be processed. For example, a region encompassing all LVL2
tracks forming Ds(φπ) or B(ππ) candidates corresponds to about 10% of the ID acceptance, on average.
At the EF, tighter mass cuts may be applied than at LVL2, due to the better track parameter resolution ob-
tained from the EF reconstruction. In addition, EF selections may include decay vertex reconstruction, al-
lowing further cuts on vertex-fit quality and decay length.

Studies using a full detector simulation have shown that an efficiency of about 70% can be obtained for
Bs→Dsπ signal events where all final state particles have pT> 1.5 GeV. The corresponding trigger rate is
about 60 Hz at LVL2 and about 6 Hz after the EF at a luminosity of 1033 cm−2s−1, using a single muon
trigger threshold of pT > 8~GeV. There is very little degradation of the trigger performance if the number
of pixel layers is reduced from three to the two layers expected at the start of LHC running.

13.3.8 Muon-electron final states

A muon-electron trigger is used to select channels such as Bd→J/ψ(e+e−)Ks events with an opposite side
muon tag, or Bd→J/ψ(µ+µ−)Ks

 with an opposite side electron tag. As for the trigger for hadronic final
states, two different strategies have been studied using either an ID full-scan or RoI-based ID track recon-
struction. In both cases a level-1 muon trigger, confirmed at level-2, is required.

For the full-scan based method, a histogramming technique <Ref_TRTLUT,Ref_xKalman> is used to
search for tracks within the entire volume of the TRT. Good efficiency has been obtained for electrons
with pT down to about 1 GeV. However, since execution time scales as 1/pT, in practice higher thresholds
may be used. To improve track parameter resolution, track candidates reconstructed by the TRT are then
extrapolated into the SCT and pixels using a Kalman filter algorithm <Ref_SiKalman>. The TRT identi-
fies e+/e− candidates on the basis of transition radiation information. Candidates passing track cuts are
combined in opposite charge-sign pairs and J/ψ(ee) mass cuts applied. An efficiency of about 40% can be
obtained for Bd→J/ψ(e+e−)Ks events where both e+ and e− have pT > 1~GeV. The corresponding LVL2

Figure 13-2 Jet RoI multiplicity (ET > 5 GeV) for
events with a muon pT > 6 GeV.

Figure 13-3 EM RoI multiplicity (ET > 2 GeV) for
events with a muon pT > 6 GeV.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

224 13 Physics selection and HLT performance

trigger rate is about 40 Hz, at a luminosity of 1033 cm−2s−1, using a pT > 8~GeV muon trigger threshold.
The tracks are refit at the EF, including a vertex fit. Decay length and fit quality cuts are applied, giving
about a factor of ten further reduction in trigger rate.

 An alternative strategy is based upon using the LVL1 trigger to find low ET electron/photon clusters
which define RoI to be investigated at LVL2. Preliminary studies, using a fast simulation, show that a rea-
sonable compromise between RoI multiplicity and electron efficiency might be obtained with a threshold
of ET>2 GeV. This gives a mean RoI multiplicity of about one for events containing a muon with
pT > 6~GeV, see Fig. <EM RoI mult>. The corresponding efficiency to create a RoI for both the e+ and e−

from J/ψ(e+e−) is about 80% in events where both final state particles have pT > 3~GeV. At LVL2, the
electron/photon RoIs are confirmed in the calorimeter, using full-granularity information and including
the pre-sampler. A search is then made, inside the RoI, for tracks in the SCT, Pixels and TRT. The RoI
about each electron candidate can be quite small, of order ∆η × ∆φ = 0.2x0.2. This gives a large saving in
reconstruction time, compared to a full-scan, but has a lower efficiency, particularly at low pT.

13.3.9 Resource estimates

In order to estimate the computing resources required for the B-trigger, measurements of execution time
are combined with estimates of trigger rate at each step of the selection. Various reconstruction algorithms
have been timed on several different platforms in order to determine the mean execution time at a given
luminosity, and the scaling of execution time with the number of hits in an event, and hence the scaling
with luminosity. These timing measurements have been combined with the estimates of trigger rates and
RoI multiplicity to give an estimate of the resources required for the B-trigger Ref. <Ref. B-trigger re-
sources>. The results are shown in Table <resource table>.

The use of low ET level-1 RoI to guide reconstruction at level-2 promises a full programme of B-physics
for very modest resources. However multiplicities and efficiencies need to be verified in studies using a
full detector simulation.

13.4 Event rates and size to off-line

Define present ideas about data compression and reduction, zero suppression for LAr (and TRT?): this
might be probably be elsewhere as well. Differences between zeros at the EF and loss-less data compres-
sion in the ROSes.

Global table on rates for initial and high luminosity, implication for off-line reconstruction (costing, later)

Table 13-3

Luminosity B-Trigger no. cpu

2x1033 cm−2s−1 Di-muon only 2

1033 cm−2s−1 Di-muon + RoI-based triggers 8

Di-muon + fill-scan based triggers 26

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

13 Physics selection and HLT performance 225

13.5 Start-up scenario

Should be here? Picture a global approach on how we are going to handle, at the selection level, the first
year of running, assuming a certain machine scenario. It is probably very appealing for LHCC

13.6 References

13-1 ATLAS detector and physics performance technical design report, CERN–LHCC/99–14/15 (1999)

13-2 S. Armstrong et al., “Requirements for an Inner Detector Event Data Model”, ATLAS-TDAQ-
2002-011.

13-3 [ref:rpc2]K. Assamagan et al., “A Hierarchical Software Identifier Scheme,” ATLAS-COM-
MUON-2002-019.

13-4 [ref:IoVS]C. Leggett and A. Schaffer, presentations at the ATLAS EDM-DD Workshop, 27
January 2003.

13-5 [SCTKalman]For more information on SCTKalman see P. Billoir and S. Qian, Nucl. Instr. Meths.,
A294 (1990) 219; P. Billoir and S. Qian, Nucl. Instr. Meths., A295 (1990) 492; I. Gaines, T.
Huehn, and S. Qian, in Proceedings of CHEP97 (Berlin); I. Gaines and S. Qian, in Proceedings of
CHEP98 (Chicago); I. Gaines, S. Gonzalez and S. Qian, in Proceedings of CHEP2000 (Padova);
D. Candlin, R. Candlin and S. Qian, in Proceedings of CHEP01 (Beijing); J. Baines, et al. ATL-
DAQ-2000-031.

13-6 [ref:TRTLUT]J. Baines et al., “Global Pattern Recognition in the TRT for B-Physics in the ATLAS
Trigger”, ATLAS-TDAQ-99-012. M. Sessler and M. Smizanska, “Global Pattern Recognition in
the TRT for the ATLAS LVL2 Trigger”, ATLAS-TDAQ-98-120.

13-7 [ref:trtkal]S. Sivoklokov, presentations made in PESA Core Algorithms Group meetings,
December 2002 and January 2003. See also S. Sivoklokov, “High pT Level 2 Trigger Algortihm
for the TRT Detector in ATRIG”, ATLAS-TDAQ-2000-043.

13-8 [T2CaloCVS]M.P. Casado, S. González, and T. Shears, TrigT2Calo package, http://atlas-
sw.cern.ch/cgi-bin/cvsweb.cgi/offline/Trigger/TrigAlgorithms/TrigT2Calo/

13-9 [T2CaloVariables]\newblock S. González, T. Hansl-Kozanecka, and M. Wielers, “Selection of
high-pT electromagnetic clusters by the level-2 trigger of ATLAS,” ATLAS-TDAQ-2000-002.

13-10 [T2CaloRefSw]\newblock S. González, B. González Pineiro, and T. Shears, “First implementation
of calorimeter FEX algorithms in the LVL2 reference software,” ATLAS-TDAQ-2000-020.

13-11 [T2CaloRefSwStudies]\newblock S. González and T. Shears “Further studies and optimization of
the level-2 trigger electron/photon FEX algorithm,” ATLAS-TDAQ-2000-042.

13-12 [RefLVL1]ATLAS first level trigger technical design report, CERN-LHCC/98-14 (1998).

13-13 [ref:mufast]A. di Mattia et al. (Rome Level-2 Muon Trigger Group), “A Muon Trigger Algorithm
for Level-2 Feature Extraction,” ATLAS-DAQ-2000-036.

13-14 [xKalman]I. Gavrilenko, “Description of Global Pattern Recognition Program (xKalman)”,
ATLAS-INDET-97-165; also see: http://maupiti.lbl.gov/atlas/xkal/xkalmanpp/index.en.html.

13-15 [iPatRec]R. Clifft and A. Poppleton, IPATREC: Inner Detector Pattern-Recognition and Track-
Fitting, see http://atlasinfo.cern.ch/Atlas/GROUPS/SOFTWARE/ DOCUMENTS/IPATREC/
ipatrec.html.

13-16 [LArClusterRec]Put LArClusterRec reference here.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

226 13 Physics selection and HLT performance

13-17 [Moore]The Moore Group, Moore – Muon OO REconstruction for ATLAS, see http://
www.usatlas.bnl.gov/computing/software/moore/.

13-18 J.Baines et. al., B-Physics Event Selection for the ATLAS High Level Trigger, ATLAS Note ATL-
DAQ-2000-031 (2000).

13-19 Effects of Inner Detector Misalignment and Inefficiency on the ATLAS B-physics Trigger by:
J.Baines, B. Epp, S.George, V.M.Ghete, G.Hollyman, D.Hutchcroft, A.Nairz, S.Sivoklokov. ATL-
DAQ-2001-006

13-20 Event Filter Rate for the Ds Trigger B. Epp, V.M.Ghete, A.Nairz. ATL-DAQ-2001-003

13-21 J.Baines et. al. Resource Estimates for the ATLAS B-physics Trigger ATLAS-COM-DAQ-2002-
001

13-22 N.Konstantinidis and H.Dreverman, Fast tracking in hadron collider experiments, in Proceedings
of the 7th International Workshop on Advanced Computing and Analysis Techniques in Physics
Research, Amer. Inst. Phys. Conference Proceedings, Vol. 583, 2001

13-23 J. Baines et al., Pattern Recognition in the TRT for the ATLAS B-Physics Trigger, ATLAS Note
ATL-DAQ-99-007 (1999).

13-24 I. Gavrilenko, Description of Global Pattern Recognition Program (XKalman), ATLAS Note ATL-
INDET-97-165 (1997).

13-25 P.Billoir and S.Qian, Simultaneous Pattern Recognition and Track Fitting by the Kalman Filtering
Method, Nucl. Instr. and Meth. A225 (1990) 219.

13-26

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

14 Overall system performance and validation 227

14 Overall system performance and validation

14.1 Introduction

- Definition of validation of rate capability, its context and scope.

- Summary of validation process

14.2 Integrated Prototypes

Description of the prototypes:

• HLT/PESA prototype

• integrated 10% system

14.2.1 System performance of event selection

NOTE: This section will (necessarily) be completed at a later time. The work described here is ongoing,
and in some cases, not even started. The following sub-sections may be re-shuffled or modified to accom-
modate the evolving tests.

The High Level Trigger will select and classify events based on software largely developed in
the offline environment. This approach minimizes duplication of effort and ensures consistency
between the offline and the online event selections. However, given the strict performance re-
quirements of a real-time online environment, it is essential to evaluate the performance of the
HLT event selection software (“PESA software”) in a realistic trigger environment.

The resource utilization characteristics of the PESA software are an important input to the mod-
els that predict overall system size and cost. For this reason, a prototyping program was devel-
oped to perform dedicated system performance measurements of the event selection software
in a testbed environment.

14.2.1.1 Measurement and validation strategy

The scope of the work reported here is limited to a system with full event selection and a mini-
mal dataflow system, providing full trigger functionality with limited performance. Such dedi-
cated “vertical slice tests” are sufficient to test the performance of the HLT event selection in a
realistic environment. Nevertheless, even in such a limited system, tests and measurements of
the dataflow aspects relevant to PESA can be carried out.

An important aspect of this prototyping work is component integration. Although single com-
ponents may perform very well in isolated tests, only integration with other system elements
may reveal weakness not foreseen in the original design. The integration and testing work de-
scribed here followed, roughly, the following steps:

5. Individual component testing and validation (addressed in Chapters 8 and 13)

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

228 14 Overall system performance and validation

6. Functional integration of relevant components (e.g., Online, Dataflow, PESA) in a small
testbed, providing feedback to developers.

7. Final system validation

8. Measurement program, including event processing times, network latencies, and thread
scaling.

The last three steps were carried out for a LVL2 testbed, an EF testbed, and a combined HLT
testbed. The following sections summarize the outcome of this integration and measurement
program.

14.2.1.2 Event selection at LVL2

Describe software components used in event selection:

• PESA Steering Controller

• Steering, Configuration. Trigger Menus

• Trigger Algorithms: T2Calo, SiTree/IDSCAN

• Data unpacking:

• BS converters for LAr,Tile,Si/pixels

• Event format library

Describe hardware components in testbed:

• L2PU

• ROS emulator

• L2SV

• pROS

Here will provide a table with summary performance numbers of L2 slice. The table will
present overheads per component (as in ATL-DAQ-2002-012) running in one thread:

• PSC+L1Result->SG

• above+dummy algorithm requesting data containers

• above-dummy+T2CALO

• above+steering

• above+IDSCAN

• above+L2result

For above, separate network latencies and PESA execution times.

Here describe system performance results for various components in different configurations, e.g., PSC
overhead, framework overhead, algorithm usage of CPU resources, number of threads, etc. Only a few re-
sults shown in a table. The rest will be in a backup document.

Also give a sense of what sort of optimization can still be done in the software/strategy so that perform-
ance can be brought to an acceptable level.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

14 Overall system performance and validation 229

Open issues: STL., etc.?

Address robustness requirements (runs more frequently in online that in offline)?

14.2.1.3 Event selection at the Event Filter

In the Event Filter, the event selection process is carried out by the processing task (ref. to chap-
ter 9). In the first section, the baseline choice of using the offline ATHENA framework as the
processing task is described, as well as the integration of the HLTSSW and ATHENA with the
Event Filter. In the second section we will describe the current testbed implementation, the
measurements and the validation strategy.

14.2.1.3.1 The Event Filter Processing Task

In the Event Filter, the PESA strategy consists in using the offline reconstruction algorithms
with the minimum set of adjustments required to comply with the performance goals. Although
the full detector information is available in the Event Filter, it will not always be necessary to
unpack the full event to reach the trigger decision. Hence, it should be possible to seed the al-
gorithms, in particular, with the LvL2 result and the corresponding lazy data unpacking mech-
anism should be supported.

The baseline implementation choice for the Event Filter Processing Task is to use the offline
ATHENA framework. ATHENA is the ATLAS concrete implementation of the underlying ar-
chitecture GAUDI. The GAUDI architecture separates Algorithm Objects from Data Objects.
The Algorithm view of the framework is shown in Figure 14-1. Each algorithm can access a set

of services via an interface: for example the Event Data Service is accessed via the IDataProvid-
erSvc interface. Data is exchanged between algorithms via the Transient Event Store.

Figure 14-1 The Gaudi application framework architecture.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

230 14 Overall system performance and validation

The HLTSSW software is an algorithm suite steered by the Step Controller algorithm (refer to
chapter XXX). While the Data Manager contributes to data preparation, all event data entities
are defined in the Event Data Model. The HLTSSW is being developed in the ATHENA frame-
work. This will facilitate the development of algorithms, the adaptation of offline algorithms,
the study of the boundaries between LvL2 and EF and the physics performances studies.

As we shall see to integrate the HLTSSW and ATHENA in the Event Filter will consist in mak-
ing concrete implementations of some of the ATHENA services. In the Event Filter, each
Processing Task consists of a standard ATHENA process, as in the offline case, that instantiates
all the necessary services and runs an "infinite" event loop.

In the following paragraphs, we will explain the event input mechanism, the production of the
EFresult data fragment and how it passed to the EFdataflow, the access to the LvL2 result and
the implementation of some of the services.

In the ATHENA/GAUDI concept, the infrastructure for reading from and writing to a particu-
lar persistency is provided by a conversion service (ref. Athena Developer Guide V 2.0.2). In this
case the persistency is a full event in ByteStream format and the transient form are collections of
Raw Data Objects while registered in the TES. The package that implements the necessary
classes for a Gaudi conversion service is the ByteStreamCnvSvc. In addition, converters are re-
sponsible for converting a particular data type, in this case one for each collection type, to and
from that particular persistency type.

Event Input

The service used to access the event is the ByteStreamCnvSvc. One of the elements of the service
is the Input Source. Currently ATHENA requires each Event Input Source to implement the
EventSelector and EventIterator interface. It is the EventSelectorByteStream that locates the re-
quested ByteStreamInputSvc whose name is specified in the jobOptions. In case of running in
the Event Filter farm, the specified input service is a class called ByteStreamEFHandlerInputSvc
that specifies the event source as coming from the EFDataflow. To run in offline mode instead,
reading data from a file containing events in ByteStream format, is achieved simply by request-
ing in the jobOptions file, a different source, the ByteStreamFileInputSvc.

When running in the Event Filter farm, the ByteStreamEFHandlerInputSvc interfaces with the
EFDataflow, at initialization time, by connecting to an instance of the EFD PTclient singleton
class (refer to Chapter 9). The method ByteStreamEFHandlerInputSvc::nextEvent requests a
pointer to the next Byte Stream event in the EFD Shared Heap. It extracts the event size from its
header and uses this information to construct an instance of the RawMemoryStorage class de-
fined by the Event Format Library (EFL) online package. This object is in turn used to create and
return an object of type RawEvent,a typedef for an Event Filter Library FullEventFragment ob-
ject that is constructed from a RawMemoryStorage instance. From this point on, the treatment
of data is exactly the same if running in the EF or offline.The IdentifiableContainer,used to con-
tain the Raw Data Objects, and the corresponding converters provide a mechanism for creating
the RDOs on demand.

After the HLTSSW processing is completed, its result is wrapped in an object of type EFResult
which is derived from the Athena DataObject class. The ByteStreamCnvSvc is again responsible
for the conversion to persistency. The list of CLIDs of objects that should be converted to per-
sistency is declared in jobOptions. When running in the offline mode, the output service is used
to simulated the events in ByteStream format; in that case the list of CLIDs of the various types
of RDO collections is declared in the jobOptions. On the other hand, when running in the Event

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

14 Overall system performance and validation 231

Filter farm, one needs only to append the EFresult to the original event residing in the shared
memory. Hence only the CLID of the EFresult object is declared in the jobOptions.

Output of EF selection process

After the event filtering process, an algorithm creates the EFresult object that contains a bit pat-
tern corresponding to the result of the selection and some more detailed information about the
selection, like which trigger element and menu items have been validated. The Athena
ByteStreamCnvSvc calls the EFResultByteStream Converter that creates a ROD fragment which
payload contains the bit pattern. The ByteStreamCnvSvc automatically takes care of collecting
all existing ROD fragments and, using the Event Format Library, constructs the Full Event Frag-
ment. The correspondence between a ROD and its corresponding ROB / ROS / SubDetector is
provide at initialization. Again there is similarity between the offline case, where the aim is to
produce ByteStream format event files and the case of the Event Filter test bed. Different jobOp-
tions will select the list of CLID for the relevant RDO collections in the first case and the EFre-
sult CLID in the latter. The same mechanism will be used to pass back to the EF additional
information contained in reconstructed objects during the selection process. For example, the
TES object representing an identified electron, given the corresponding converter that serializes
the information and insert it in a ROD fragment, can also be included in the Event Filter "Sub-
detector Fragment" and will be appended to the original event.

Access to the LvL2 result

The access to the LvL2 result is a trivial matter. The converter associated to the LvL2result object
will be automatically called by ATHENA and the object created in the TES after unpacking the
LvL2 "Subdetector" fragment when the first access request will be issued by one the HLTSSW
algorithm.

Other services

Various others ATHENA services will be interfaced to the EFsupervison, like messaging, error
reporting, exception handling or to Condition Database services, etc. Again, to switch running
in offline mode or running in the EF farm will consist in selecting the appropriate concrete serv-
ice implementation via jobOption files.

Conclusion

We have seen that the use of the Athena software as the EF Processing Task makes it completely
transparent to switch from the offline development environment to the EF farm which was one
of the important requirement. Next we have to validate that this approach meets the perform-
ance requirements of the Event Filter.

14.2.1.3.2 Event Filter Prototype

To validate the choice of the ATHENA Framework for the Processing Task, an implementation
of the HLTSSW running in ATHENA in the Event Filter has been prototyped in the Magni Clus-
ter (ref. to XXX).

The strategy of validation consists in running some of the most relevant triggers in terms of
rates: the electron trigger and the muon trigger. Efforts have been directed to the electron trigger
first. The HLTSSW suite for electron identification is run starting with ByteStream data files cor-
responding to single electrons and dijet events, the main background source. The files have

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

232 14 Overall system performance and validation

been simulated offline and the result of the LvL2 selection in form of a LvL2 "Subdetector" frag-
ment is included.

The current HLTSSW selection suite includes tracking and calorimeter reconstruction adapted
from the offline electron identification software. The interface to the EF Dataflow PTclient de-
scribed in the above section has been implemented. For now, the EFresult object contains a set of
bits matched to the decision of the selection process: "Accept", "Reject", "ForcedAccept", "Error".
No additional reconstructed objects are serialized in the current test. The implementation of the
services are the following:

• The message service simply writes to a log file specific for each PTtask (name declared in
jobOption file and known by the EFSupervision)

• The histogram service is interfaced to the Web based histogram service (refer to section
XXX??)

Validation procedure:

1. The basic log files are monitored by the Supervision has a simple monitoring and debug-
ging tool.

2. For timing measurement, the TrigTimeAlgs package is used. This allows to compare tim-
ing measurement done offline with the ones made in the test bed. It should be pointed
out, that there is a complete decoupling between latency due to the EFdataflow and the
latency of the ATHENA and HLTSSW selection process. One the pointer to the Shared-
Heap is passed to Athena there is no difference between that case and the offline case
where the ByteStream has been read from a file and copied in the local memory. Compar-
ing the two modes, running with equivalent processors, allows to measure the additional
overhead that could arise when running, in the offline case, in an uncontrolled farm envi-
ronment. The latency in the EF that may result when the request is issued for a new event
can be measured with a dummy PT. This complete decoupling will not be true any more
when the database access at run time will be enabled. This is not included in the current
test.

3. The histogramming package is exercised. Histograms are produced by the various
processing tasks and are collected by EF Supervision.

4. The Efresult will be appended to the original Event. These events are analysed and their
content compared to the result of processing the same events offline.

14.2.1.4 Testing of HLT

Here will try to treat LVL2/EF as one unit. Show successful integration of LVL2 and EF in a testbed.
Briefly talk about benefits of LVL2-seeded Event filter and the use of the pROS.

14.2.2 The 10% prototype

Description of the integrated 10% system

14.2.2.1 Laboratory setup

 - machines, networks, OS platform(s), hardware emulators (if any)

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

14 Overall system performance and validation 233

 - refer to architecture and components chapters for details

14.2.2.2 Description of the measurements

 - scope of the measurement (what parameter(s) of Chapter 2, "Parameters" are we testing)

 - parameter space covered

14.2.2.3 Results

 - prototype results

 - comparison with required performance

14.3 Functional tests and testbeam

During prototyping phases, often the performance of a system is put in foreground with respect
to its stability and maintainability. Functional user requirements have in this phase of develop-
ment a lower priority than the achievement of the performance requirements. This is to some
extend true also for the TDAQ system, which has focused its efforts in the area of trigger rates,
speed of data acquisition, etc. Nevertheless we have decided to also stress the global functional-
ity of the TDAQ system, by carrying out a series of functional tests and exposing the system to
non expert users at the ATLAS test beam sites.

Three different aspects of the functionality have been covered:

• a)Dynamic system configuration

• b)Stability in cycling through TDAQ finite states

• c)Operational monitoring and system recovery in case of errors

All these aspects have first been tested in dedicated laboratory setups and then verified in a "re-
al" environment, during test beam data taking.

• a)A TDAQ system has to be easily reconfigurable in order to accommodate the substitu-
tion of hardware, the change of trigger conditions, etc. This means that on one side all the
tools to keep the configuration parameters in a database have to be developed and on the
other side that the Run Control, DataFlow and Trigger software has to be designed to be
dynamically reconfigurable.

To verify the flexibility of our system the following tests have been carried out:

• -substitution of a data taking machine

• - exclusion and reinsertion of a Run Control branch

• -change of communication protocol between the ROS and the L2/EF (= change of Data
Collection protocol)

• -change of run parameters.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

234 14 Overall system performance and validation

More detailed test description and measurement results to be included here.

• b)When performing a series of measurements with different configuration options, the
TDAQ system must be capable of cycling through its finite states stably. This functional
requirement has been checked via automated scripts cycling repeatedly through the finite
state machine.

More detailed test description and measurement results to be included here.

• c)In a distributed system such as the TDAQ it is important to constantly monitor the op-
eration of the system. Furthermore, the fault tolerance is a fundamental aspect of its func-
tionality. In this area several improvements are still to be achieved, but we decided to
carry out a series of tests in order to assess the present performance of the system in case
of errors. In particular we tried to test the fault tolerance of the system in the presence of a
fatal error which prevents on or more data taking computers to continue their working.

• Verification that all applications provide regular information on their status

• -Failure of a SFO

• -Failure of a EF subfarm (distributor or collector)

• -Failure of a EF processing task

• -Failure of a SFI

• -Failure of a L2PU

• -Failure of a DFM

• -Failure of a L2SV

• -Failure of the RoI builder

• -Failure of a ROS

• -Failure of a ROBIN

• -Failure of a ROL

•

• -failure of online sw servers (is, mrs, ipc, ….)

More detailed test description and measurement results to be included here.

The results of the various tests will determine the summary and conclusions of this section. It is prema-
ture to indicate them now.

14.4 Paper model

14.4.1 LVL1 trigger menu

The exclusive rates for the different LVL1 trigger menu items are specified in Table 14-1. E.m./
gamma (EM, the I refers to “isolated”), muon (MU), jet (J) and hadron (TAU) RoIs are distin-
guished, and labelled with the LVL1 energy or transverse momentum threshold. XE refers to

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

14 Overall system performance and validation 235

the LVL1 missing energy trigger. For a discussion of these menus see Chapter 4, "Physics selec-
tion strategy" (NB: 5 kHz of “Other items” are not taken into account).

14.4.2 Parameters relevant for LVL2 processing

The LVL2 processing consists of several steps and after each step a decision is taken on whether
data from other subdetectors within the region of interest should be requested for further anal-
ysis. In Table 14-2 the subdetectors are indicated from which data are requested in the different
processing steps for the four different types of RoIs. The associated acceptance factors are also
specified in the table. The data rates can be estimated using these factors and information on the
sizes and the locations of the regions of interest, and on the mapping of the detector on the
ROBins, in the following way: the LVL1 trigger defines a finite number of possible RoI locations.
A small region in eta-phi space corresponds to each location. A hit in this region satisfying ap-
propriate LVL1 trigger criteria generate a RoI with a location corresponding to the region. The
relative RoI rate for each location is assumed to be proportional to the surface of this region,
while the sum of the rates for all possible locations should be equal to the LVL1 menu RoI rate.
This makes it possible to determine the rate for each possible location. In combination with the
RoI sizes (see Table 14-3) and the mapping of the detector on the ROBIns the RoI data request
rates for each ROBIn can be calculated. Information on the mapping can be found in ref.....
(backup document on paper modelling).

In order to establish the processing resources needed for the LVL2 trigger the algorithm execu-
tion times and the overheads for sending requests and receiving data are needed. See Table 14-4
for current estimates, assuming execution on 4 GHz machines. The numbers specified include
estimates of the time needed for data preparation. Furthermore for each Ethernet frame sent or
received an overhead of 4 resp. 8 microseconds is taken into account. These values have been
estimated from measurement results for the SFI. The processing step resulting in a decision is
assumed to take 50 microseconds. Merging of event fragments into a larger fragment suitable
for input in the algorithms is assumed to proceed at 160 MByte/s.

Table 14-1 Exclusive rates for the LVL1 trigger menu items. For items for which two possibilities are indicated.
the latter corresponds to design luminosity

LVL1 Trigger menu item Low luminosity (kHz) Design luminosity (kHz)

MU20 0.8 4.0

2 MU6 0.2 1.0

MU10 + EM15I 0.1 0.4

EM25I / EM30I 12.0 22.0

2 EM15I / 2 EM20I 4.0 5.0

J200 / J290 0.2 0.2

3J90 / 3J130 0.2 0.2

4J65 / 4J90 0.2 0.2

J60+XE60 / J100+XE100 0.4 0.5

TAU25+XE30 / TAU60+XE60 2.0 1.0

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

236 14 Overall system performance and validation

14.4.3 Parameters relevant for Event Builder and Event Filter

Events need to be fully built at a rate equal to the acceptance rate of the LVL2 trigger (0.6 or 1.5
kHz) and then to be analysed by the Event Filter. The Event Filter is expected to reduce the rate

Table 14-2 Subdetector data requested by different processing steps of the LVL2 trigger for the different types
of RoIs and associated acceptance factors. The acceptance factors are relative to the LVL1 RoI rate.

Type of RoI First step
Acceptance
factor Second step

Acceptance
factor Third step

EM E.m. calorime-
ter

0.19 (design
lum.: 0.16)

Hadron calo-
rimeter

0.11 (design
lum.: 0.16)

TRT /SCT/Pix-
els

JET E.m. and
hadron calo-
rimeters

1.0

TAU E.m. and
hadron calo-
rimeters

0.2 TRT /SCT/Pix-
els

MUON Muon preci-
sion and trig-
ger detectors

0.39 SCT/Pixels 0.086 E.m. and
hadron calo-
rimeters (only
for design
luminosity)

Table 14-3 LVL2 RoI sizes

Type of RoI Size in eta Size in phi

EM 0.2 0.2

JET 0.8 0.8

TAU 0.2 0.2

MUON ~ 0.3 - 0.4 (depends
on detector)

~ 0.1 - 0.4 (smallest
in muon and in
inner detector)

Table 14-4 Estimated execution times (in ms) of LVL2 algorithm steps on a 4 GHz processor and for low and
design luminosity respectively. The estimated time needed for data preparation has been included in the RoI
processing times. The algorithm execution times are the m_95 values (see chapter...)

Type of RoI or
trigger

Muon
detectors Calorimeters TRT SCT + Pixels

EM 0.088/0.123 (e.m.)
0.023/0.032 (hadron)

8.33/24.56 1.36/3.88

JET 0.68/0.68

TAU 0.044/0.061 (e.m.)
0.011/0.016 (hadron)

8.33/24.56 1.36/3.88

MUON 0.5/0.5 0.044/0.061 (e.m.)
0.011/0.016 (hadron)

8.33/-- 1.36/3.88

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

14 Overall system performance and validation 237

by a factor of 10 (see ch....) with a typical processing time of 1 second per event, which requires
a farm of at least 300 or 750 dual-CPU PCs.

14.4.4 Data rate summaries

The LVL2 system and the Event Builder both send requests for data to the ROBIns. The rate of
the requests from the Event Builder is equal to the event building rate, i.e. 0.6 or 1.5 kHz. The
rate of LVL2 requests per ROBIn is presented in Table 14-5. The total data volume output per
ROBIn is shown in Table 14-6. See for similar tables for ROS PCs handling data from 12 ROLs
(for cases where the number of ROLs is not a multiple of 12 the PC with less than 12 ROLS con-
nected has not been taken into account for calculating the averages) Table 14-7 and Table 14-8.
Network specific wrappers have not been taking into account in calculating the data volumes.
For the total data volumes and for LVL2 farm sizes and number of SFIs see chapter 2.

.

Table 14-5 LVL2 request rate per ROBIn in kHz, “overall average”: averaged over all ROBIns, “maximum aver-
age”: time average for the ROBIn with the highest average number of requests

Luminosity
Muon
trigger

Muon
precision

E.m. ca-
lorimeter

Hadr. ca-
lorimeter TRT SCT Pixels

Low
(overall average)

0.02 0.04 0.42 0.27 0.03 0.11 0.13

Low
(max. average)

0.04 0.06 1.19 0.40 0.04 0.15 0.20

Design
(overall average)

0.10 0.22 0.61 0.31 0.01 0.27 0.34

Design
(max. average)

0.20 0.30 1.75 0.45 0.02 0.37 0.49

Table 14-6 Output data volume per ROBIn in MByte/s (LVL2 data and data sent to the Event Builder), “overall
average”: averaged over all ROBIns, “maximum average”: time average for the ROBIn with the highest average
number of requests

Luminosity
Muon
trigger

Muon
precision

E.m. ca-
lorimeter

Hadron
ca-
lorimeter TRT SCT Pixels

Low
(overall average)

0.56 0.31 0.87 0.75 0.28 0.31 0.22

Low
(max. average)

0.58 0.32 1.53 0.86 0.28 0.33 0.24

Design
(overall average)

1.45 0.83 1.81 1.55 1.97 2.31 1.11

Design
(max. average)

1.54 0.87 2.79 1.67 1.98 2.44 1.20

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

238 14 Overall system performance and validation

14.4.5 The role of sequential processing

The sequential processing applied in the LVL2 trigger requires less data to be transported and
less CPU time for the trigger algorithms., compared to the scenario in which all data that possi-
bly could be needed is requested and processed. In particular analysis of the inner tracker data
is less frequently needed. As shown in Table 14-4 this type of analysis is time consuming and
therefore an important reduction (up to a factor of 10) is obtained by applying sequential
processing, see Table 14-9. In the table also the reduction in RoI request rates and amount of
data to be transferred to the LVL2 processors is specified.

Table 14-7 LVL2 request rate per ROS PC in kHz, “overall average”: averaged over all PCs, “maximum aver-
age”: time average for the PC with the highest average number of requests

Luminosity
Muon
trigger

Muon
precision

E.m. ca-
lorimeter

Hadr. ca-
lorimeter TRT SCT Pixels

Low
(overall average)

0.2 0.4 3.0 1.9 0.2 0.8 1.0

Low
(max. average)

0.3 0.5 8.2 2.1 0.3 0.9 1.5

Design
(overall average)

0.9 1.9 4.4 2.1 0.1 2.0 2.6

Design
(max. average)

1.4 2.4 12.2 2.4 0.1 2.2 3.9

Table 14-8 Output data volume per ROS PC in MByte/s (LVL2 data and data sent to the Event Builder), “overall
average”: averaged over all PCs, “maximum average”: time average for the PC with the highest average number
of requests

Luminosity
Muon
trigger

Muon
precision

E.m. ca-
lorimeter

Hadron
ca-
lorimeter TRT SCT Pixels

Low
(overall average)

6.8 3.8 10.8 9.2 3.4 3.8 2.8

Low
(max. average)

6.9 3.9 18.2 9.9 3.4 4.0 3.0

Design
(overall average)

17.6 10.3 22.2 18.9 23.8 28.2 13.7

Design
(max. average)

18.2 10.6 33.3 19.6 23.8 29.2 14.6

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

14 Overall system performance and validation 239

14.5 Computer model

• Discrete event simulation

• Object oriented model of system, most objects represent hardware, software or data items

• Two tools: at2sim, based on Ptolemy, and Simdaq, a dedicated C++ program

• Testbed models and models of full system.

• For the full system model the same LVL1 trigger menus as for paper model are used to
generate an appropriate number and type of RoIs for each event. As in the paper model,
the eta and phi coordinates of the RoIs are chosen at random from the possible eta, phi co-
ordinates (as defined by the LVL1 trigger). The mapping of the detector on the ROBIns is
the same as for the paper model. Average message rates and volumes and total CPU pow-
er utilized as obtained from the paper and the computer model of the full system there-
fore should be equal within the statistical errors.

• Component models described in detail in back-up document

The availability of network connections and switches with sufficient bandwidth and of a suffi-
cient amount of computing resources in the DAQ and HLT systems does not guarantee a satis-
factory system performance. The computing load should be distributed evenly over the
available computing resources and congestion in switches should be prevented, as this may
lead to message loss, if not enough buffer space inside the switches is available.

From the previous section and from Chapter 2 it can be concluded that the total available output
bandwidth from the ROS (two Gigabit Ethernet connections per ROS PC) is considerably higher
than the required bandwidth (about 28 GByte/vs. 6 GByte/s for design luminosity and a LVL1
trigger rate of 75 kHz). If single LVL2 and Event Builder switches, with the order of 200 ports
and non-blocking, can be used, message loss due to buffer overflow inside the switches is un-
likely. Furthermore traffic shaping as well as flow control provide the possibility to reduce the
probability of message loss. Computer model results will show that building up of queues is
unlikely.

The LVL2 supervisor and the DFM both can assign events to each L2PU or SFI such that the
load is spread evenly. For example a simple and effective algorithm consists of the supervisor or
DFM maintaining an administration of how many events are being handled by each L2PU or
SFI. As the supervisor and DFM receive a message when processing is finished it is straightfor-
ward to implement this. A new event can then be assigned to the L2PU or SFI with the smallest
number of events to process. Simulations of the LVL2 system have shown this to be a very effec-

Table 14-9 The effect of sequential processing on request rates, LVl2 data volume and size of the LVL2 farm.

Low luminosity
Sequential

Low luminosity
Non-sequential

Design Luminosity
Sequential

Design Luminosity
Non-sequential

LVL2 total request rate
(all ROBIns) (kHz)

387 644 572 1109

LVL2 total data vol-
ume (MByte/s)

325 467 532 1084

Number of LVL2 dual-
CPU PCs

32 199 64 864

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

240 14 Overall system performance and validation

tive strategy, with which high average loads of the L2PUs are possible (reference to TPR or new re-
sults, if available).

14.5.1 Result of testbed model

LVL2 Subsystem test, EF subsystem test, Minimal DataFlow test, larger setups..

Type of results: model and experimental results for throughput, maximum message rate, laten-
cy...

14.5.2 Results of extrapolation of testbed model and identification of problem
areas

Full model

Type of results: latency, queuing in system, effectiveness of limiting output rates of ROBIns and
of number of outstanding requests in L2PUs and SFIs, effect of different strategies for event as-
signment to L2PUs and to SFIs.

14.6 Title?

14.6.1 Technology tracking up to LHC turn-on

14.6.1.1 Network technology

14.6.1.2 Processors.

14.6.2 Survey of non-ATLAS solutions

 (a reality-check on ATLAS approach?)

14.6.3 Implication of staging scenarios

 Re-interpretation of performance numbers for staging scenarios

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

14 Overall system performance and validation 241

14.6.4 Areas of concern

14.7 Conclusions

14.8 References

14-1

14-2

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

242 14 Overall system performance and validation

Part 4

Organisation and Plan

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

15 Quality Assurance and Development Process 245

15 Quality Assurance and Development Process

15.1 Quality Assurance in TDAQ

 Quality assurance during the production of hardware and software systems is provided for
with the adoption of a development framework for DAQ components. The development frame-
work consists of distinct development phases. At the end of each phase a set of deliverables is
provided. This framework is complemented by guidelines, checklists and standards, internal re-
views, templates, development and testing tools and coding standards. Those are being adopt-
ed as common working practice and help for error removal and error prevention in the system.

A TDAQ wide body, the Connect Forum [15-1] assists in coordinating development process ac-
tivities and quality assurance methodologies across Atlas TDAQ/DCS. It also provides advice,
especially via the recommendations and information made available through Web pages which
reflect the dynamic nature of the activity.

A common approach to the development via the use of rules, in-house standards and document
templates helps in building a project culture. Those rules as well as the development phases
themselves are not enforced but rather mend to be a help for developers. Emphasis on the vari-
ous phases will vary and evolve with the life of the project. During event production for exam-
ple, the emphasis will be put on maintenance and regular automized validation testing

A powerful release management system and a convenient working environment provide the
necessary technical working basis.

15.2 The Development Process

 The software development process (SDP) in Atlas TDAQ provides the structure and the se-
quence of activities required for development. A basic framework is provided to guide develop-
ers through the steps needed during the development of a component or a system. Continual
review and modification of the SDP provides it with the flexibility to adapt to the evolution of
the components and systems.

 Many of the recommended approaches in the SDP are also applicable to the development of
hardware components or sub-systems involving both software and hardware. The SDP consists
of the following phases as shown in Figures 15-1: Brainstorming, Requirements, Architecture
and Design, Implementation, Testing, Maintenance, complemented by reviews. Emphasis on
the phases will evolve within time.

15.2.1 Inspection and Review

Written material including documents and code are subjected to a process of inspection and re-
view at each step from Requirements to Implementation, in the SDP. Inspection is essentially a
quality improvement process used to detect defects. The inspection process in the Atlas TDAQ
project is based on Tom Gilb’s Software Inspection method [15-2]. An important feature of the

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

246 15 Quality Assurance and Development Process

inspection procedure is its flexibility, allowing it to evolve as needs change during the lifetime
of the project.

Overall responsibility for an inspection is taken by an inspection leader who appoints an in-
spection team consisting of the document author and three to five inspectors. The core of the in-
spection process is the checking phase where the inspectors read the document in detail,
comparing it against source documents and lists of rules and standards. Defects are logged in a
table, where a defect is defined as a violation of any of the standards. Emphasis is placed on
finding major defects which could seriously compromise the final product. The defects are dis-
cussed at a logging meeting and their acceptance or rejection is recorded in an inspection issue
log. The document author edits the document according to the log making an explanatory note
if an issue is rejected. Feedback is also obtained on how the inspection procedure itself may be
improved.

The principal aim of inspection is to detect and correct major defects in a product. An additional
benefit is the possibility to prevent defects in future products by learning from the defects found
during inspection procedures. Inspection also provides on-the-job education to people new to a
project and generally improves the project’s working culture.

A number of web pages have been produced which provide supporting material for inspections
such as instructions for inspectors and log file templates[15-3].

15.2.2 Experience

The Software Development Process provides a disciplined approach to producing, testing and
maintaining the various systems required by the ATLAS TDAQ project. It helps to ensure the
production of high quality software and hardware which meets the requirements within a pre-
dictable schedule.

Table 15-1 Phases and flow of the Software Development Process

C o m p o n e n tC o m p o n e n t
S o ftw a r e S o ftw a r e
D e v e lo p m e n t D e v e lo p m e n t
P r o c e ss F lo w P r o c e ss F lo w

R e v ie w

R e v ie w

D e s ig n

Im p le m e n t
T e s ts

T e s t P la n

Im p le m e n ta t io n

C o m p o n e n t T e s t

D e p lo y m e n t

In te g ra t io n T e s t

F e e d b a c k

o th e r
c o m p o n e n ts

R e q u ire m e n ts

T e s t R e p o rt

B ra in s to rm in g

R e v ie w

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

15 Quality Assurance and Development Process 247

However, one of the key differences in adopting the SDP in an HEP as opposed to industrial en-
vironment is that its application cannot be enforced. Furthermore, the use of such a process may
appear too rigid to physicists not accustomed to working in a strong management framework.
Nonetheless, the working culture can be changed by increasing awareness of the benefits of the
SDP through training, for example involving new group members in inspections, and ensuring
that the SDP itself is sufficiently flexible to evolve with the changing needs of an HEP experi-
ment. This approach is working. The SDP as outlined in this section has already been adopted
by a number of the sub-systems in the ATLAS TDAQ project with positive outcomes [refs].

15.2.3 The Development Phases

15.2.3.1 Requirements

The Requirements phase for a particular sub-system or component consists of gathering the re-
quirements and then documenting them. Several documents have been produced to aid and
control these activities, based on the early experience of some of the sub-systems. The whole
process of working group setup, requirements collection, feedback & review is described [15-4].
Another document [15-5] sets out the principles governing the requirements gathering and doc-
umentation processes, stressing the importance of, for example, documentation, evolutionary
development, communication, and collective ownership of the requirements specification.

The actual process of establishing the requirements for a sub-system or component is aided by a
collection of "hints" [15-6], and reinforced by a set of 22 rules [15-7] for the requirements docu-
ment itself, for which a template [15-8] has been provided in each of the supported documenta-
tion formats.

15.2.3.2 Architecture and Design

The Architectural Analysis and Design Phase of the SDP follows the Requirements phase and
takes as its starting points the User Requirements & Use Cases together with accompanying
documents. This phase has sometimes been referred to as "high-level system design". A sys-
tem’s architecture is the highest level concept of that system in its environment. It refers to the
organization or structure of significant components interacting through interfaces, those com-
ponents being composed of successively smaller components and interfaces. A design presents
a model which is an abstraction of the system to be designed. The step from a real world system
to abstraction is analysis. A ’Howto’ note [15-9] has been produced describing the overall proc-
ess.

For this phase, we are largely following the approach of the Rational Unified Process (RUP),
which contains descriptions of concepts, artifacts, guidelines, examples and templates. In par-
ticular, we have highlighted the RUP descriptions of architectural analysis and design concepts
[15-10] and guidelines for producing software architecture and design documents[15-11].

We have adapted the RUP template for architecture and design documents by including expla-
nations and making it available in supported formats[15-12]. The recommended notation is the
Unified Modelling Language (UML), and the design is presented in the template as a set of
UML-style views. We have also prepared recipes for producing appropriate diagrams and in-
corporating them into documents.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

248 15 Quality Assurance and Development Process

15.2.3.3 Implementation

The Implementation Phase of the SDP is largely concerned with writing and checking code and
producing and debugging hardware components. At the end of the implementation phase an
Inspection is performed.

ATLAS C++ coding conventions[15-13] are being applied to newly written code and being in-
troduced for existing code still in evolution. In the case of Java we await the outcome of the At-
las investigation of coding conventions. DCS will follow the coding standards provided by the
JCOP Framework for PVSS [15-14].

Guidelines [15-15] have been provided for multi-user multi-platform scripting, as well as many
explanations and examples in unix-scripting[15-16].

Experience has been gathered with a number of software tools and recommendations have been
made in the areas of design and documentation [15-17], code checking[15-18], and source code
management[15-19]. No standards have been identified for the hardware so far.

15.2.3.4 Component Testing and Integration Testing

Testing occurs during the entire life-time of a component, group of components or entire sys-
tem. Referring to figure [SDP], the initial test plan is written during the requirements and de-
sign phases of the component, so as not to be biassed by the implementation. Since testing is
likely to be an iterative process the test plan is written with re-use in mind. Once implementa-
tion is complete and passes relevant checking tools the component undergoes unit testing to
verify its functionality. Compatibility with other components is verified with integration tests.
Several types of tests can be envisaged for both individual components and groups of compo-
nents. These include functionality, scalability, performance, fault tolerance and regression tests.

A test report is written once each test is complete. To aid the testing procedure, templates [15-
20] are provided for both the test plan and test report in each of the supported documentation
formats. More detailed descriptions of the types of test, hints on testing and recommended test-
ing tools are also provided [15-21]. Testing is repeated at many points during the life-time of a
component, for example at each new release of the component software or after a period of inac-
tivity (system shutdown). Automatic testing and diagnostic procedures to verify the component
before use greatly improve efficiency.

15.2.3.5 Maintenance

As with testing, maintenance occurs during the entire life-time of a component. Several types of
maintenance can be envisaged. Corrective maintenance involves the fixing of bugs. Adaptive
maintenance involves alterations to support changes in the technical environment. Preventative
maintenance entails the restructuring and rewriting of code or modification of hardware for fu-
ture ease of maintenance. Maintenance is closely coupled to regression testing which should oc-
cur each time a maintenance action has been completed to verify that the detected problems
have been fixed and new defects have not been introduced. Significant changes to the function-
ality of the component such as the addition of large numbers of new requirements should in-
volve a full re-iteration of the SDP cycle.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

15 Quality Assurance and Development Process 249

15.2.4 The Development Environment

Regular releases of the sub-system software to be used in test beam operation, system integra-
tion and large scale tests is being complemented by nightly builds and automated tests to en-
sure early problem finding of newly developed or enhanced products. The use of a source code
management system and of the standard release building tool CMT [15-19] allows for the build-
ing of common releases of the TDAQ system. These releases are available for the platforms used
in Atlas TDAQ which are currently a number of Linux versions and for some sub-systems Lynx-
OS and SunOS. Build policies of different sub-system like the use of compiler versions and plat-
forms are coordinated.

Development tools like design tools, memory leak checking tools, automatic document produc-
tion tools and code checking tools are vital elements of the development environment.

No standards have been identified for the hardware so far.

15.3 Quality Assurance During Deployment

15.3.1 Quality Assurance of operations during data taking times

The quality of the DAQ system must be assured when it is in use during the setup and installa-
tion phase of the Atlas data acquisition together with the detectors. Correct and smooth data
taking shall be aimed for during calibration and physics event production.

Quality assurance is achieved by prevention, monitoring and fault tolerance.

• prevention: this includes training, appropriate documentation, a well defined develop-
ment process, proper management of computing infrastructure (computer farms, read-
out electronics and networks), tracing of hardware and software changes, regular testing
of components.

• monitoring: special tasks to monitor proper functioning of equipment and data integrity.
These may run as special processes or be part of the TDAQ applications. Anomalies are
reported, analysed by human/artificial intelligence and appropriate recovery action is in-
ititated. This may include running special diagnostic code, replacement of faulty equip-
ment, rebooting of processors, restarting of applications, re-establishing network
connections, re-configuration to continue with a possibly reduced system. Incomplete or
corrupted data should be marked in the event data stream and possibly recorded in the
conditions database. Physics monitoring may lead to a change of run with different trig-
ger conditions and event selection algorithms.

fault tolerance: built into the system from the start and using an efficient error reporting, analy-
sis and recovery system this provides the basis (cf. chap.6 for details). Some redundancy to re-
duce possible single point of failures is foreseen where affordable (cf. chap. 6).

During the life of the experiment small or major pieces of hardware or software will need to be
replaced with more modern technology ones. The component structure with the well defined
functionality of each component and well defined interfaces allowing for black-box testing ac-
cording to those functionality specifications will allow to incorporate smoothly new parts into a
running system, in particular also when staging of the system is required.

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

250 15 Quality Assurance and Development Process

15.4 References

15-1 http://atlas-connect-forum.web.cern.ch/Atlas-connect-forum/

15-2 reference to Tom Gilb’s inspection method

15-3 TDAQ inspection web pages

15-4 Practical Steps towards an Atlas TDAQ Requirements document.

15-5 Requirements gathering and documentation "principles".

15-6 Hints on how to establish requirements.

15-7 Requirements Document Rules ATLAS DAQ ’in-house’ rules for Requirements
documents. ID: ATD-R-R1.

15-8 Requirements Document Template for Systems and Components, Software and
Hardware.

15-9 How-to for Design

15-10 RUP URL for concepts.

15-11 RUP URL for guidelines.

15-12 Template for Software Architecture Document.

15-13 ATLAS C++ Coding Standard Specification The coding conventions.

15-14 JCOP Framework for PVSS.

15-15 Multi-user multi-platform scripting guidelines.

15-16 Unix-scripting examples and explanations.

15-17 Doxygen, Visual Thought, Together, DOC++, Source Navigator

15-18 RuleChecker

15-19 CVS, SRT, CMT

15-20 reference to templates on web page

15-21 reference to testing web page

open points:

- HW inventory and information logging

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

16 Costing 251

16 Costing

16.1 Initial system

16.2 Final system

16.3 Deferral plan

16.4 References

16-1

16-2

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

252 16 Costing

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

17 Organization and resources 253

17 Organization and resources

Should the geographical, racks, power supplies, and cooling issues be addresses in this chapter or in the
system component ones?

17.1 ...

17.2 References

17-1

17-2

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

254 17 Organization and resources

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

18 Work-plan 255

18 Work-plan

Post TDR. Need to change the title of the chapter I think

18.1 Schedule

This section will present the overall schedule for the HLT/DAQ up to LHC turn-on in 2007. The
principal milestones coming from: detector needs for TDAQ in installation, TDAQ component
production (in the case of custom components like the ROBin & the RoIB), component purchas-
ing & associated tendering, component testing time etc. Probably require a MSproject style dia-
gram plus associated details.

18.2 Commissioning

Description of first ideas for the commissioning process of the TDAQ as well as the steps in the
detector commissioning which need TDAQ components.

18.2.1 TDAQ

How are the various elements of the system will be commissioned. What other elements will be
required for this

18.2.2 Tools for detectors

More details on which elements of TDAQ will be required by the detectors, and when, to
progress with their commissioning plans

18.3 Workplan up to June 2005

Here we should discuss in some detail the work needed to be done in the coming 2 years to ar-
rive at decisions and final choices in the various areas of the system. The year 2003/4 should be
presented in as much detail as possible, enumerating specific dates where possible. The work
for the following year will probably contain somewhat less detail.

18.4 References

18-1

18-2

ATLAS Technical Design Report
High-Level Triggers, DAQ and DCS 30 June 2003

256

This document has been prepared with Release 5.5 of the Adobe FrameMaker® Technical Publishing
System using the Technical Design Report template prepared by Mario Ruggier of the Information and
Programming Techniques Group, ECP Division, CERN, according to requirements from the ATLAS
collaboration.

To facilitate multiple author editing and electronic distribution of documents, only widely available
fonts have been used. The principal ones are:

Running text: Palatino 10.5 point on 13 point line spacing
Chapter headings: Helvetica Bold 18 point
2nd, 3rd and 4th level headings: Helvetica Bold 14, 12 and 10 point respectively
Figure and table captions: Helvetica 9 point

